File size: 13,555 Bytes
71b93be |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 |
from collections import OrderedDict
from functools import partial
from typing import Callable, Optional
import torch.nn as nn
import torch
from torch import Tensor
def drop_path(x, drop_prob: float = 0., training: bool = False):
"""
Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
"Deep Networks with Stochastic Depth", https://arxiv.org/pdf/1603.09382.pdf
This function is taken from the rwightman.
It can be seen here:
https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/layers/drop.py#L140
"""
if drop_prob == 0. or not training:
return x
keep_prob = 1 - drop_prob
shape = (x.shape[0],) + (1,) * (x.ndim - 1) # work with diff dim tensors, not just 2D ConvNets
random_tensor = keep_prob + torch.rand(shape, dtype=x.dtype, device=x.device)
random_tensor.floor_() # binarize
output = x.div(keep_prob) * random_tensor
return output
class DropPath(nn.Module):
"""
Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
"Deep Networks with Stochastic Depth", https://arxiv.org/pdf/1603.09382.pdf
"""
def __init__(self, drop_prob=None):
super(DropPath, self).__init__()
self.drop_prob = drop_prob
def forward(self, x):
return drop_path(x, self.drop_prob, self.training)
class ConvBNAct(nn.Module):
def __init__(self,
in_planes: int,
out_planes: int,
kernel_size: int = 3,
stride: int = 1,
groups: int = 1,
norm_layer: Optional[Callable[..., nn.Module]] = None,
activation_layer: Optional[Callable[..., nn.Module]] = None):
super(ConvBNAct, self).__init__()
padding = (kernel_size - 1) // 2
if norm_layer is None:
norm_layer = nn.BatchNorm2d
if activation_layer is None:
activation_layer = nn.SiLU # alias Swish (torch>=1.7)
self.conv = nn.Conv2d(in_channels=in_planes,
out_channels=out_planes,
kernel_size=kernel_size,
stride=stride,
padding=padding,
groups=groups,
bias=False)
self.bn = norm_layer(out_planes)
self.act = activation_layer()
def forward(self, x):
result = self.conv(x)
result = self.bn(result)
result = self.act(result)
return result
class SqueezeExcite(nn.Module):
def __init__(self,
input_c: int, # block input channel
expand_c: int, # block expand channel
se_ratio: float = 0.25):
super(SqueezeExcite, self).__init__()
squeeze_c = int(input_c * se_ratio)
self.conv_reduce = nn.Conv2d(expand_c, squeeze_c, 1)
self.act1 = nn.SiLU() # alias Swish
self.conv_expand = nn.Conv2d(squeeze_c, expand_c, 1)
self.act2 = nn.Sigmoid()
def forward(self, x: Tensor) -> Tensor:
scale = x.mean((2, 3), keepdim=True)
scale = self.conv_reduce(scale)
scale = self.act1(scale)
scale = self.conv_expand(scale)
scale = self.act2(scale)
return scale * x
class MBConv(nn.Module):
def __init__(self,
kernel_size: int,
input_c: int,
out_c: int,
expand_ratio: int,
stride: int,
se_ratio: float,
drop_rate: float,
norm_layer: Callable[..., nn.Module]):
super(MBConv, self).__init__()
if stride not in [1, 2]:
raise ValueError("illegal stride value.")
self.has_shortcut = (stride == 1 and input_c == out_c)
activation_layer = nn.SiLU # alias Swish
expanded_c = input_c * expand_ratio
# 在EfficientNetV2中,MBConv中不存在expansion=1的情况所以conv_pw肯定存在
assert expand_ratio != 1
# Point-wise expansion
self.expand_conv = ConvBNAct(input_c,
expanded_c,
kernel_size=1,
norm_layer=norm_layer,
activation_layer=activation_layer)
# Depth-wise convolution
self.dwconv = ConvBNAct(expanded_c,
expanded_c,
kernel_size=kernel_size,
stride=stride,
groups=expanded_c,
norm_layer=norm_layer,
activation_layer=activation_layer)
self.se = SqueezeExcite(input_c, expanded_c, se_ratio) if se_ratio > 0 else nn.Identity()
# Point-wise linear projection
self.project_conv = ConvBNAct(expanded_c,
out_planes=out_c,
kernel_size=1,
norm_layer=norm_layer,
activation_layer=nn.Identity) # 注意这里没有激活函数,所有传入Identity
self.out_channels = out_c
# 只有在使用shortcut连接时才使用dropout层
self.drop_rate = drop_rate
if self.has_shortcut and drop_rate > 0:
self.dropout = DropPath(drop_rate)
def forward(self, x: Tensor) -> Tensor:
result = self.expand_conv(x)
result = self.dwconv(result)
result = self.se(result)
result = self.project_conv(result)
if self.has_shortcut:
if self.drop_rate > 0:
result = self.dropout(result)
result += x
return result
class FusedMBConv(nn.Module):
def __init__(self,
kernel_size: int,
input_c: int,
out_c: int,
expand_ratio: int,
stride: int,
se_ratio: float,
drop_rate: float,
norm_layer: Callable[..., nn.Module]):
super(FusedMBConv, self).__init__()
assert stride in [1, 2]
assert se_ratio == 0
self.has_shortcut = stride == 1 and input_c == out_c
self.drop_rate = drop_rate
self.has_expansion = expand_ratio != 1
activation_layer = nn.SiLU # alias Swish
expanded_c = input_c * expand_ratio
# 只有当expand ratio不等于1时才有expand conv
if self.has_expansion:
# Expansion convolution
self.expand_conv = ConvBNAct(input_c,
expanded_c,
kernel_size=kernel_size,
stride=stride,
norm_layer=norm_layer,
activation_layer=activation_layer)
self.project_conv = ConvBNAct(expanded_c,
out_c,
kernel_size=1,
norm_layer=norm_layer,
activation_layer=nn.Identity) # 注意没有激活函数
else:
# 当只有project_conv时的情况
self.project_conv = ConvBNAct(input_c,
out_c,
kernel_size=kernel_size,
stride=stride,
norm_layer=norm_layer,
activation_layer=activation_layer) # 注意有激活函数
self.out_channels = out_c
# 只有在使用shortcut连接时才使用dropout层
self.drop_rate = drop_rate
if self.has_shortcut and drop_rate > 0:
self.dropout = DropPath(drop_rate)
def forward(self, x: Tensor) -> Tensor:
if self.has_expansion:
result = self.expand_conv(x)
result = self.project_conv(result)
else:
result = self.project_conv(x)
if self.has_shortcut:
if self.drop_rate > 0:
result = self.dropout(result)
result += x
return result
class EfficientNetV2(nn.Module):
def __init__(self,
model_cnf: list,
num_classes: int = 1000,
num_features: int = 1280,
dropout_rate: float = 0.2,
drop_connect_rate: float = 0.2):
super(EfficientNetV2, self).__init__()
for cnf in model_cnf:
assert len(cnf) == 8
norm_layer = partial(nn.BatchNorm2d, eps=1e-3, momentum=0.1)
stem_filter_num = model_cnf[0][4]
self.stem = ConvBNAct(3,
stem_filter_num,
kernel_size=3,
stride=2,
norm_layer=norm_layer) # 激活函数默认是SiLU
total_blocks = sum([i[0] for i in model_cnf])
block_id = 0
blocks = []
for cnf in model_cnf:
repeats = cnf[0]
op = FusedMBConv if cnf[-2] == 0 else MBConv
for i in range(repeats):
blocks.append(op(kernel_size=cnf[1],
input_c=cnf[4] if i == 0 else cnf[5],
out_c=cnf[5],
expand_ratio=cnf[3],
stride=cnf[2] if i == 0 else 1,
se_ratio=cnf[-1],
drop_rate=drop_connect_rate * block_id / total_blocks,
norm_layer=norm_layer))
block_id += 1
self.blocks = nn.Sequential(*blocks)
head_input_c = model_cnf[-1][-3]
head = OrderedDict()
head.update({"project_conv": ConvBNAct(head_input_c,
num_features,
kernel_size=1,
norm_layer=norm_layer)}) # 激活函数默认是SiLU
head.update({"avgpool": nn.AdaptiveAvgPool2d(1)})
head.update({"flatten": nn.Flatten()})
if dropout_rate > 0:
head.update({"dropout": nn.Dropout(p=dropout_rate, inplace=True)})
head.update({"classifier": nn.Linear(num_features, num_classes)})
self.head = nn.Sequential(head)
# initial weights
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight, mode="fan_out")
if m.bias is not None:
nn.init.zeros_(m.bias)
elif isinstance(m, nn.BatchNorm2d):
nn.init.ones_(m.weight)
nn.init.zeros_(m.bias)
elif isinstance(m, nn.Linear):
nn.init.normal_(m.weight, 0, 0.01)
nn.init.zeros_(m.bias)
def forward(self, x: Tensor) -> Tensor:
x = self.stem(x)
x = self.blocks(x)
x = self.head(x)
return x
def efficientnetv2_s(num_classes: int = 1000):
"""
EfficientNetV2
https://arxiv.org/abs/2104.00298
"""
# train_size: 300, eval_size: 384
# repeat, kernel, stride, expansion, in_c, out_c, operator, se_ratio
model_config = [[2, 3, 1, 1, 24, 24, 0, 0],
[4, 3, 2, 4, 24, 48, 0, 0],
[4, 3, 2, 4, 48, 64, 0, 0],
[6, 3, 2, 4, 64, 128, 1, 0.25],
[9, 3, 1, 6, 128, 160, 1, 0.25],
[15, 3, 2, 6, 160, 256, 1, 0.25]]
model = EfficientNetV2(model_cnf=model_config,
num_classes=num_classes,
dropout_rate=0.2)
return model
def efficientnetv2_m(num_classes: int = 1000):
"""
EfficientNetV2
https://arxiv.org/abs/2104.00298
"""
# train_size: 384, eval_size: 480
# repeat, kernel, stride, expansion, in_c, out_c, operator, se_ratio
model_config = [[3, 3, 1, 1, 24, 24, 0, 0],
[5, 3, 2, 4, 24, 48, 0, 0],
[5, 3, 2, 4, 48, 80, 0, 0],
[7, 3, 2, 4, 80, 160, 1, 0.25],
[14, 3, 1, 6, 160, 176, 1, 0.25],
[18, 3, 2, 6, 176, 304, 1, 0.25],
[5, 3, 1, 6, 304, 512, 1, 0.25]]
model = EfficientNetV2(model_cnf=model_config,
num_classes=num_classes,
dropout_rate=0.3)
return model
def efficientnetv2_l(num_classes: int = 1000):
"""
EfficientNetV2
https://arxiv.org/abs/2104.00298
"""
# train_size: 384, eval_size: 480
# repeat, kernel, stride, expansion, in_c, out_c, operator, se_ratio
model_config = [[4, 3, 1, 1, 32, 32, 0, 0],
[7, 3, 2, 4, 32, 64, 0, 0],
[7, 3, 2, 4, 64, 96, 0, 0],
[10, 3, 2, 4, 96, 192, 1, 0.25],
[19, 3, 1, 6, 192, 224, 1, 0.25],
[25, 3, 2, 6, 224, 384, 1, 0.25],
[7, 3, 1, 6, 384, 640, 1, 0.25]]
model = EfficientNetV2(model_cnf=model_config,
num_classes=num_classes,
dropout_rate=0.4)
return model
|