File size: 4,952 Bytes
d1253a8
 
 
 
8c2ee0f
d1253a8
f067bfb
8c2ee0f
d1253a8
 
a5244e0
d1253a8
 
a5244e0
d1253a8
 
 
 
8c2ee0f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d1253a8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a5244e0
 
d1253a8
 
 
 
 
 
 
 
 
 
 
8c2ee0f
d1253a8
 
 
 
 
 
 
 
5faacb0
8c2ee0f
d1253a8
8c2ee0f
 
5faacb0
8c2ee0f
 
d1253a8
 
 
8c2ee0f
 
 
 
 
 
d1253a8
 
8c2ee0f
d1253a8
 
25099ea
 
d1253a8
8c2ee0f
d1253a8
8c2ee0f
 
d1253a8
 
8c2ee0f
d1253a8
8c2ee0f
d1253a8
f067bfb
 
 
d1253a8
1f4f8d3
d1253a8
5faacb0
d1253a8
 
 
8c2ee0f
d1253a8
 
96cdbc3
d1253a8
 
 
8c2ee0f
 
96cdbc3
 
 
 
 
8c2ee0f
 
 
 
 
 
 
 
06aa2d9
f067bfb
 
d1253a8
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
import os
import json
import glob
from collections import defaultdict
import pandas as pd
import gradio as gr
from content import *
from css import *
import glob

ARC = "arc"
HELLASWAG = "hellaswag"
MMLU = "mmlu"
TRUTHFULQA = "truthfulqa"
BENCHMARKS = [ARC, HELLASWAG, MMLU, TRUTHFULQA]

METRICS = ["acc_norm", "acc_norm", "acc_norm", "mc2"]

LANGS = 'ar,bn,ca,da,de,es,eu,fr,gu,hi,hr,hu,hy,id,it,kn,ml,mr,ne,nl,pt,ro,ru,sk,sr,sv,ta,te,uk,vi,zh'.split(',')

LANG_NAME = {
    'ar': 'Arabic',
    'bn': 'Bengali',
    'ca': 'Catalan',
    'da': 'Danish',
    'de': 'German',
    'es': 'Spanish',
    'eu': 'Basque',
    'fr': 'French',
    'gu': 'Gujarati',
    'hi': 'Hindi',
    'hr': 'Croatian',
    'hu': 'Hungarian',
    'hy': 'Armenian',
    'id': 'Indonesian',
    'it': 'Italian',
    'kn': 'Kannada',
    'ml': 'Malayalam',
    'mr': 'Marathi',
    'ne': 'Nepali',
    'nl': 'Dutch',
    'pt': 'Portuguese',
    'ro': 'Romanian',
    'ru': 'Russian',
    'sk': 'Slovak',
    'sr': 'Serbian',
    'sv': 'Swedish',
    'ta': 'Tamil',
    'te': 'Telugu',
    'uk': 'Ukrainian',
    'vi': 'Vietnamese',
    'zh': 'Chinese'
}


def collect_results():
    performance_dict = defaultdict(dict)
    pretrained_models = set()
    for file in glob.glob('evals/*/*.json'):
        with open(file, 'r') as f:
            data = json.load(f)
        if 'results' not in data:
            continue
        if 'config' not in data:
            continue
        results = data['results']
        config = data['config']
        if 'model_args' not in config:
            continue

        model_args = config['model_args'].split(',')
        pretrained = [x for x in model_args if x.startswith('pretrained=')]
        if len(pretrained) != 1:
            continue
        pretrained = pretrained[0].split('=')[1]
        pretrained = pretrained.split('/')[-1]
        pretrained_models.add(pretrained)

        for lang_task, perfs in results.items():
            task, lang = lang_task.split('_')
            assert task in BENCHMARKS

            if lang and task:
                metric = METRICS[BENCHMARKS.index(task)]
                p = round(perfs[metric] * 100, 1)
                performance_dict[(pretrained, lang)][task] = p
    return performance_dict, pretrained_models


def get_leaderboard_df(performance_dict, pretrained_models):
    df = list()
    for (pretrained, lang), perfs in performance_dict.items():
        lang_name = LANG_NAME[lang]
        arc_perf = perfs.get(ARC, 0.0)
        hellaswag_perf = perfs.get(HELLASWAG, 0.0)
        mmlu_perf = perfs.get(MMLU, 0.0)
        truthfulqa_perf = perfs.get(TRUTHFULQA, 0.0)

        if arc_perf * hellaswag_perf * mmlu_perf * truthfulqa_perf == 0:
            continue
        avg = round((arc_perf + hellaswag_perf + mmlu_perf + truthfulqa_perf) / 4, 1)
        notes = ' '.join([pretrained, lang_name])
        row = [pretrained, lang_name, lang, avg, arc_perf, hellaswag_perf, mmlu_perf, truthfulqa_perf, notes]
        df.append(row)

    df = pd.DataFrame.from_records(df, columns=COLS)
    df = df.sort_values(by=[LANG_COL, AVERAGE_COL], ascending=False)
    df = df[COLS]

    return df


def search_table(df, query):
    filtered_df = df[df[NOTES_COL].str.contains(query, case=False)]
    return filtered_df



MODEL_COL = "Model"
LANG_COL = "Language"
CODE_COL = "Code"
AVERAGE_COL = "Average"
ARC_COL = "ARC (25-shot)"
HELLASWAG_COL = "HellaSwag (0-shot)️"
MMLU_COL = "MMLU (25-shot)"
TRUTHFULQA_COL = "TruthfulQA (0-shot)"
NOTES_COL = "Notes"  # For search only

COLS = [MODEL_COL, LANG_COL, CODE_COL, AVERAGE_COL, ARC_COL, HELLASWAG_COL, MMLU_COL, TRUTHFULQA_COL, NOTES_COL]
TYPES = ["str", "str", "str", "number", "number", "number", "number", "number", "str"]

args = collect_results()
original_df = get_leaderboard_df(*args)

demo = gr.Blocks(css=CUSTOM_CSS)
with demo:
    gr.HTML(TITLE)
    gr.Markdown(INTRO_TEXT, elem_classes="markdown-text")
    gr.Markdown(HOW_TO, elem_classes="markdown-text")

    with gr.Group():
        search_bar = gr.Textbox(
            placeholder="Search models and languages...", show_label=False, elem_id="search-bar"
        )

        leaderboard_table = gr.components.Dataframe(
            value=original_df,
            headers=COLS,
            datatype=TYPES,
            # max_rows=5,
            elem_id="leaderboard-table",
        )

        # # Dummy leaderboard for handling the case when the user uses backspace key
        hidden_leaderboard_table_for_search = gr.components.Dataframe(
            value=original_df, 
            headers=COLS, 
            datatype=TYPES, 
            # max_rows=5, 
            visible=False
        )

        search_bar.change(
            search_table,
            [hidden_leaderboard_table_for_search, search_bar],
            leaderboard_table,
        )

    gr.Markdown(CREDIT, elem_classes="markdown-text")
    gr.Markdown(CITATION, elem_classes="markdown-text")

demo.launch()