Spaces:
Paused
Paused
File size: 8,396 Bytes
026b316 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 |
import json
from sentence_transformers import SentenceTransformer, util
import nltk
import os
from nltk.translate.bleu_score import sentence_bleu, SmoothingFunction
import time
import asyncio
import logging
import subprocess
import requests
import sys
import os
import threading
# Set the GLOO_SOCKET_IFNAME environment variable
os.environ["GLOO_SOCKET_IFNAME"] = "lo"
# Configure logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(levelname)s - %(message)s'
)
# Configure logging
logging.basicConfig(level=logging.INFO)
def load_input_data():
"""Load input data from command line arguments."""
try:
input_data = json.loads(sys.argv[1])
return input_data
except json.JSONDecodeError as e:
logging.error(f"Failed to decode JSON input: {e}")
sys.exit(1)
# Load pre-trained models for evaluation
semantic_model = SentenceTransformer('all-MiniLM-L6-v2')
# Download necessary NLTK resources
nltk.download('punkt')
# Load your dataset
with open('output_json.json', 'r') as f:
data = json.load(f)
def wait_for_server(max_attempts=60):
"""Wait for the vLLM server to become available."""
url = "http://localhost:8000/health"
for attempt in range(max_attempts):
try:
response = requests.get(url)
if response.status_code == 200:
logging.info("vLLM server is ready!")
return True
except requests.exceptions.RequestException as e:
logging.info(f"Server not ready yet: {e}. Retrying in {2**attempt} seconds...")
time.sleep(2**attempt)
def log_output(pipe, log_func):
"""Helper function to log output from a subprocess pipe."""
for line in iter(pipe.readline, ''):
log_func(line.strip())
def start_vllm_server(model_name):
cmd = [
"vllm",
"serve",
f"PharynxAI/{model_name}",
"--gpu_memory_utilization=0.80",
"--max_model_len=4096",
"--enable-chunked-prefill=False",
"--num_scheduler_steps=2"
]
logging.info(f"Starting vLLM server with command: {' '.join(cmd)}")
# Start the server subprocess
server_process = subprocess.Popen(
cmd,
stdout=subprocess.PIPE,
stderr=subprocess.PIPE,
text=True,
bufsize=1
)
# # Use threads to handle stdout and stderr in real-time
# threading.Thread(target=log_output, args=(server_process.stdout, logging.info), daemon=True).start()
# threading.Thread(target=log_output, args=(server_process.stderr, logging.error), daemon=True).start()
# Wait for the server to become ready
if not wait_for_server():
server_process.terminate()
raise Exception("Server failed to start in time.")
return server_process
def evaluate_semantic_similarity(expected_response, model_response, semantic_model):
"""Evaluate semantic similarity using Sentence-BERT."""
expected_embedding = semantic_model.encode(expected_response, convert_to_tensor=True)
model_embedding = semantic_model.encode(model_response, convert_to_tensor=True)
similarity_score = util.pytorch_cos_sim(expected_embedding, model_embedding)
return similarity_score.item()
def evaluate_bleu(expected_response, model_response):
"""Evaluate BLEU score using NLTK's sentence_bleu."""
expected_tokens = nltk.word_tokenize(expected_response.lower())
model_tokens = nltk.word_tokenize(model_response.lower())
smoothing_function = nltk.translate.bleu_score.SmoothingFunction().method1
bleu_score = nltk.translate.bleu_score.sentence_bleu([expected_tokens], model_tokens, smoothing_function=smoothing_function)
return bleu_score
async def query_vllm_server(prompt, model_name, max_retries=3):
"""Query the vLLM server with retries."""
url = "http://localhost:8000/v1/chat/completions"
headers = {"Content-Type": "application/json"}
data = {
"model": f"PharynxAI/{model_name}",
"messages": [
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": prompt}
]
}
for attempt in range(max_retries):
try:
response = requests.post(url, headers=headers, json=data, timeout=300)
response.raise_for_status()
return response.json() # returns the complete response object
except Exception as e:
if attempt < max_retries - 1:
logging.error(f"Attempt {attempt + 1}/{max_retries} failed: {e}. Retrying...")
await asyncio.sleep(5)
else:
logging.error(f"Failed to query vLLM server after {max_retries} attempts: {e}")
raise
async def evaluate_model(data, model_name, semantic_model):
"""Evaluate the model using the provided data."""
semantic_scores = []
bleu_scores = []
for entry in data:
prompt = entry['prompt']
expected_response = entry['response']
try:
# Query the vLLM server
response = await query_vllm_server(prompt, model_name)
# Extract model's response from the 'choices' field
if 'choices' not in response or not response['choices']:
logging.error(f"No choices returned for prompt: {prompt}. Skipping this entry.")
continue
# Extract the content of the assistant's response
model_response = response['choices'][0]['message']['content']
# Evaluate scores
semantic_score = evaluate_semantic_similarity(expected_response, model_response, semantic_model)
semantic_scores.append(semantic_score)
bleu_score = evaluate_bleu(expected_response, model_response)
bleu_scores.append(bleu_score)
# Print the individual evaluation results
print(f"Prompt: {prompt}")
print(f"Expected Response: {expected_response}")
print(f"Model Response: {model_response}")
print(f"Semantic Similarity: {semantic_score:.4f}")
print(f"BLEU Score: {bleu_score:.4f}")
except Exception as e:
logging.error(f"Error processing entry: {e}")
continue
# Calculate average scores
avg_semantic_score = sum(semantic_scores) / len(semantic_scores) if semantic_scores else 0
avg_bleu_score = sum(bleu_scores) / len(bleu_scores) if bleu_scores else 0
# Create comprehensive results dictionary
evaluation_results = {
'average_semantic_score': avg_semantic_score,
'average_bleu_score': avg_bleu_score
}
# Print results to stdout for capturing in handler
print(json.dumps(evaluation_results))
logging.info("\nOverall Average Scores:")
logging.info(f"Average Semantic Similarity: {avg_semantic_score:.4f}")
logging.info(f"Average BLEU Score: {avg_bleu_score:.4f}")
return evaluation_results
async def main():
# Load input data
input_data = load_input_data()
model_name = input_data["model_name"]
server_process = None
try:
# Check if the model directory exists
model_path = f"PharynxAI/{model_name}"
if not os.path.exists(model_path):
logging.error(f"Model path does not exist: {model_path}")
logging.info("Please ensure the model is downloaded and the path is correct")
sys.exit(1)
# # Start vLLM server
server_process = start_vllm_server(model_name)
# Run the evaluation asynchronously
await evaluate_model(data, model_name, semantic_model)
except Exception as e:
logging.error(f"An error occurred: {e}")
sys.exit(1)
finally:
# Cleanup: terminate the server process if it exists
if server_process:
logging.info("Shutting down vLLM server...")
server_process.terminate()
try:
server_process.wait(timeout=5)
except subprocess.TimeoutExpired:
logging.warning("Server didn't terminate gracefully, forcing kill...")
server_process.kill()
server_process.wait()
logging.info("Server shutdown complete")
if __name__ == "__main__":
# Start the event loop
asyncio.run(main())
|