File size: 8,534 Bytes
026b316
 
 
 
 
 
 
 
 
 
be3b9e4
 
 
 
 
 
 
 
026b316
 
7552f31
026b316
 
 
 
7552f31
 
 
 
 
 
 
026b316
7552f31
 
 
 
 
 
 
026b316
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7552f31
026b316
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7552f31
 
 
 
026b316
7552f31
 
 
 
026b316
7552f31
026b316
 
7552f31
026b316
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7552f31
026b316
 
7552f31
 
 
026b316
 
 
 
 
 
 
 
7552f31
026b316
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7552f31
 
 
 
 
 
 
026b316
 
 
 
 
 
 
 
 
 
 
 
 
 
7552f31
 
026b316
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
import logging
import runpod
import os
import shutil
import uuid
import json
import time
import subprocess
from typing import Dict, Any
from azure.storage.blob import BlobServiceClient
# Modify logging configuration to print to console and file
logging.basicConfig(
    level=logging.DEBUG,  # Change to DEBUG to capture more detailed logs
    format='%(asctime)s - %(levelname)s - %(message)s',
    handlers=[
        logging.StreamHandler()  # Add stream handler to print to console
    ]
)
def get_azure_connection_string():
    """Get Azure connection string from environment variable"""
    conn_string = "DefaultEndpointsProtocol=https;AccountName=transcribedblobstorage;AccountKey=1Z7yKPP5DLbxnoHdh7NmHgwg3dFLaDiYHUELdid7dzfzR6/DvkZnnzpJ30lrXIMhtD5GYKo+71jP+AStC1TEvA==;EndpointSuffix=core.windows.net"
    if not conn_string:
        raise ValueError("Azure Storage connection string not found in environment variables")
    return conn_string

def upload_file(file_path: str) -> str:
    if not os.path.isfile(file_path):
        raise FileNotFoundError(f"The specified file does not exist: {file_path}")
    container_name = "saasdev"
    connection_string = get_azure_connection_string()
    blob_service_client = BlobServiceClient.from_connection_string(connection_string)
    container_client = blob_service_client.get_container_client(container_name)
    
    # Generate a unique blob name using UUID
    blob_name = f"{uuid.uuid4()}.pdf"
    with open(file_path, 'rb') as file:
        blob_client = container_client.get_blob_client(blob_name)
        blob_client.upload_blob(file)
        logging.info(f"File uploaded to blob: {blob_name}")
        return blob_name

def download_blob(blob_name: str, download_file_path: str) -> None:
    """Download a file from Azure Blob Storage"""
    container_name = "saasdev"
    connection_string = get_azure_connection_string()
    blob_service_client = BlobServiceClient.from_connection_string(connection_string)
    container_client = blob_service_client.get_container_client(container_name)
    blob_client = container_client.get_blob_client(blob_name)

    os.makedirs(os.path.dirname(download_file_path), exist_ok=True)
    
    with open(download_file_path, "wb") as download_file:
        download_stream = blob_client.download_blob()
        download_file.write(download_stream.readall())
    logging.info(f"Blob '{blob_name}' downloaded to '{download_file_path}'")


def clean_directory(directory: str) -> None:
    """Clean up a directory by removing all files and subdirectories"""
    if os.path.exists(directory):
        for filename in os.listdir(directory):
            file_path = os.path.join(directory, filename)
            try:
                if os.path.isfile(file_path) or os.path.islink(file_path):
                    os.remove(file_path)
                elif os.path.isdir(file_path):
                    shutil.rmtree(file_path)
            except Exception as e:
                logging.error(f'Failed to delete {file_path}. Reason: {e}')

def handler(job: Dict[str, Any]) -> Dict[str, Any]:
    start_time = time.time()
    logging.info("Handler function started")

    job_input = job.get('input', {})
    required_fields = ['pdf_file', 'system_prompt', 'model_name', 'max_step', 'learning_rate', 'epochs']
    missing_fields = [field for field in required_fields if field not in job_input]
    
    if missing_fields:
        return {
            "status": "error",
            "error": f"Missing required fields: {', '.join(missing_fields)}"
        }

    work_dir = os.path.abspath(f"/tmp/work_{str(uuid.uuid4())}")
    
    try:
        os.makedirs(work_dir, exist_ok=True)
        logging.info(f"Working directory created: {work_dir}")

        # Upload PDF to Blob
        pdf_path = job_input['pdf_file']
        generated_blob_name = upload_file(pdf_path)
        logging.info(f"PDF uploaded with blob name: {generated_blob_name}")

        # Download the uploaded PDF using the internally generated blob name
        downloaded_path = os.path.join(work_dir, "Downloaded_PDF.pdf")
        download_blob(generated_blob_name, downloaded_path)
        logging.info(f"PDF downloaded to: {downloaded_path}")

        # Save pipeline input as JSON
        pipeline_input_path = os.path.join(work_dir, "pipeline_input.json")
        pipeline_input = {
            "pdf_file": downloaded_path,
            "system_prompt": job_input['system_prompt'],
            "model_name": job_input['model_name'],
            "max_step": job_input['max_step'],
            "learning_rate": job_input['learning_rate'],
            "epochs": job_input['epochs']
        }
        
        with open(pipeline_input_path, 'w') as f:
            json.dump(pipeline_input, f)

        # Run fine-tuning and evaluation
        return run_pipeline_and_evaluate(pipeline_input_path, job_input['model_name'], start_time)

    except Exception as e:
        error_message = f"Job failed after {time.time() - start_time:.2f} seconds: {str(e)}"
        logging.error(error_message)
        return {
            "status": "error",
            "error": error_message
        }

    finally:
        try:
            clean_directory(work_dir)
            os.rmdir(work_dir)
        except Exception as e:
            logging.error(f"Failed to clean up working directory: {str(e)}")


def run_pipeline_and_evaluate(pipeline_input_path: str, model_name: str, start_time: float) -> Dict[str, Any]:
    try:
        # Suppress logging output
        logging.getLogger().setLevel(logging.ERROR)
        
        # Read the pipeline input file
        with open(pipeline_input_path, 'r') as f:
            pipeline_input = json.load(f)
            
        # Convert the input to a JSON string for passing as an argument
        pipeline_input_str = json.dumps(pipeline_input)
        
        # Run fine-tuning pipeline with JSON string as argument
        # logging.info(f"Running pipeline with input: {pipeline_input_str[:100]}...")
        finetuning_result = subprocess.run(
            ['python3', 'Finetuning_Pipeline.py', pipeline_input_str],
            capture_output=True,
            text=True,
            check=True
        )
        logging.info("Fine-tuning completed successfully")

        # Run evaluation
        evaluation_input = json.dumps({"model_name": model_name})
        result = subprocess.run(
            ['python3', 'VLLM_evaluation.py', evaluation_input],
            capture_output=True,
            text=True,
            check=True
        )
        
        try:
            # Extract JSON part from stdout
            output_lines = result.stdout.splitlines()
            for line in reversed(output_lines):
                try:
                    evaluation_results = json.loads(line)
                    if "average_semantic_score" in evaluation_results and "average_bleu_score" in evaluation_results:
                        break
                except json.JSONDecodeError:
                    continue
            else:
                # If no valid JSON is found, fall back to raw output
                evaluation_results = {"raw_output": result.stdout}

        except Exception as e:
            evaluation_results = {"error": f"Failed to process evaluation output: {str(e)}"}

        # Print only the JSON part to stdout for capturing in Gradio
        print(json.dumps({
            "status": "success",
            "model_name": f"PharynxAI/{model_name}",
            "processing_time": time.time() - start_time,
            "evaluation_results": evaluation_results
        }))

        return {
            "status": "success",
            "model_name": f"PharynxAI/{model_name}",
            "processing_time": time.time() - start_time,
            "evaluation_results": evaluation_results
        }

    except subprocess.CalledProcessError as e:
        error_message = f"Pipeline process failed: {e.stderr}"
        logging.error(error_message)
        return {
            "status": "error",
            "error": error_message,
            # "stdout": e.stdout,
            # "stderr": e.stderr
        }
    except Exception as e:
        error_message = f"Pipeline execution failed: {str(e)}"
        logging.error(error_message)
        return {
            "status": "error",
            "error": error_message
        }
if __name__ == "__main__":
    logging.basicConfig(
        level=logging.INFO,
        format='%(asctime)s - %(levelname)s - %(message)s'
    )
    runpod.serverless.start({"handler": handler})