Spaces:
Paused
Paused
File size: 8,534 Bytes
026b316 be3b9e4 026b316 7552f31 026b316 7552f31 026b316 7552f31 026b316 7552f31 026b316 7552f31 026b316 7552f31 026b316 7552f31 026b316 7552f31 026b316 7552f31 026b316 7552f31 026b316 7552f31 026b316 7552f31 026b316 7552f31 026b316 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 |
import logging
import runpod
import os
import shutil
import uuid
import json
import time
import subprocess
from typing import Dict, Any
from azure.storage.blob import BlobServiceClient
# Modify logging configuration to print to console and file
logging.basicConfig(
level=logging.DEBUG, # Change to DEBUG to capture more detailed logs
format='%(asctime)s - %(levelname)s - %(message)s',
handlers=[
logging.StreamHandler() # Add stream handler to print to console
]
)
def get_azure_connection_string():
"""Get Azure connection string from environment variable"""
conn_string = "DefaultEndpointsProtocol=https;AccountName=transcribedblobstorage;AccountKey=1Z7yKPP5DLbxnoHdh7NmHgwg3dFLaDiYHUELdid7dzfzR6/DvkZnnzpJ30lrXIMhtD5GYKo+71jP+AStC1TEvA==;EndpointSuffix=core.windows.net"
if not conn_string:
raise ValueError("Azure Storage connection string not found in environment variables")
return conn_string
def upload_file(file_path: str) -> str:
if not os.path.isfile(file_path):
raise FileNotFoundError(f"The specified file does not exist: {file_path}")
container_name = "saasdev"
connection_string = get_azure_connection_string()
blob_service_client = BlobServiceClient.from_connection_string(connection_string)
container_client = blob_service_client.get_container_client(container_name)
# Generate a unique blob name using UUID
blob_name = f"{uuid.uuid4()}.pdf"
with open(file_path, 'rb') as file:
blob_client = container_client.get_blob_client(blob_name)
blob_client.upload_blob(file)
logging.info(f"File uploaded to blob: {blob_name}")
return blob_name
def download_blob(blob_name: str, download_file_path: str) -> None:
"""Download a file from Azure Blob Storage"""
container_name = "saasdev"
connection_string = get_azure_connection_string()
blob_service_client = BlobServiceClient.from_connection_string(connection_string)
container_client = blob_service_client.get_container_client(container_name)
blob_client = container_client.get_blob_client(blob_name)
os.makedirs(os.path.dirname(download_file_path), exist_ok=True)
with open(download_file_path, "wb") as download_file:
download_stream = blob_client.download_blob()
download_file.write(download_stream.readall())
logging.info(f"Blob '{blob_name}' downloaded to '{download_file_path}'")
def clean_directory(directory: str) -> None:
"""Clean up a directory by removing all files and subdirectories"""
if os.path.exists(directory):
for filename in os.listdir(directory):
file_path = os.path.join(directory, filename)
try:
if os.path.isfile(file_path) or os.path.islink(file_path):
os.remove(file_path)
elif os.path.isdir(file_path):
shutil.rmtree(file_path)
except Exception as e:
logging.error(f'Failed to delete {file_path}. Reason: {e}')
def handler(job: Dict[str, Any]) -> Dict[str, Any]:
start_time = time.time()
logging.info("Handler function started")
job_input = job.get('input', {})
required_fields = ['pdf_file', 'system_prompt', 'model_name', 'max_step', 'learning_rate', 'epochs']
missing_fields = [field for field in required_fields if field not in job_input]
if missing_fields:
return {
"status": "error",
"error": f"Missing required fields: {', '.join(missing_fields)}"
}
work_dir = os.path.abspath(f"/tmp/work_{str(uuid.uuid4())}")
try:
os.makedirs(work_dir, exist_ok=True)
logging.info(f"Working directory created: {work_dir}")
# Upload PDF to Blob
pdf_path = job_input['pdf_file']
generated_blob_name = upload_file(pdf_path)
logging.info(f"PDF uploaded with blob name: {generated_blob_name}")
# Download the uploaded PDF using the internally generated blob name
downloaded_path = os.path.join(work_dir, "Downloaded_PDF.pdf")
download_blob(generated_blob_name, downloaded_path)
logging.info(f"PDF downloaded to: {downloaded_path}")
# Save pipeline input as JSON
pipeline_input_path = os.path.join(work_dir, "pipeline_input.json")
pipeline_input = {
"pdf_file": downloaded_path,
"system_prompt": job_input['system_prompt'],
"model_name": job_input['model_name'],
"max_step": job_input['max_step'],
"learning_rate": job_input['learning_rate'],
"epochs": job_input['epochs']
}
with open(pipeline_input_path, 'w') as f:
json.dump(pipeline_input, f)
# Run fine-tuning and evaluation
return run_pipeline_and_evaluate(pipeline_input_path, job_input['model_name'], start_time)
except Exception as e:
error_message = f"Job failed after {time.time() - start_time:.2f} seconds: {str(e)}"
logging.error(error_message)
return {
"status": "error",
"error": error_message
}
finally:
try:
clean_directory(work_dir)
os.rmdir(work_dir)
except Exception as e:
logging.error(f"Failed to clean up working directory: {str(e)}")
def run_pipeline_and_evaluate(pipeline_input_path: str, model_name: str, start_time: float) -> Dict[str, Any]:
try:
# Suppress logging output
logging.getLogger().setLevel(logging.ERROR)
# Read the pipeline input file
with open(pipeline_input_path, 'r') as f:
pipeline_input = json.load(f)
# Convert the input to a JSON string for passing as an argument
pipeline_input_str = json.dumps(pipeline_input)
# Run fine-tuning pipeline with JSON string as argument
# logging.info(f"Running pipeline with input: {pipeline_input_str[:100]}...")
finetuning_result = subprocess.run(
['python3', 'Finetuning_Pipeline.py', pipeline_input_str],
capture_output=True,
text=True,
check=True
)
logging.info("Fine-tuning completed successfully")
# Run evaluation
evaluation_input = json.dumps({"model_name": model_name})
result = subprocess.run(
['python3', 'VLLM_evaluation.py', evaluation_input],
capture_output=True,
text=True,
check=True
)
try:
# Extract JSON part from stdout
output_lines = result.stdout.splitlines()
for line in reversed(output_lines):
try:
evaluation_results = json.loads(line)
if "average_semantic_score" in evaluation_results and "average_bleu_score" in evaluation_results:
break
except json.JSONDecodeError:
continue
else:
# If no valid JSON is found, fall back to raw output
evaluation_results = {"raw_output": result.stdout}
except Exception as e:
evaluation_results = {"error": f"Failed to process evaluation output: {str(e)}"}
# Print only the JSON part to stdout for capturing in Gradio
print(json.dumps({
"status": "success",
"model_name": f"PharynxAI/{model_name}",
"processing_time": time.time() - start_time,
"evaluation_results": evaluation_results
}))
return {
"status": "success",
"model_name": f"PharynxAI/{model_name}",
"processing_time": time.time() - start_time,
"evaluation_results": evaluation_results
}
except subprocess.CalledProcessError as e:
error_message = f"Pipeline process failed: {e.stderr}"
logging.error(error_message)
return {
"status": "error",
"error": error_message,
# "stdout": e.stdout,
# "stderr": e.stderr
}
except Exception as e:
error_message = f"Pipeline execution failed: {str(e)}"
logging.error(error_message)
return {
"status": "error",
"error": error_message
}
if __name__ == "__main__":
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(levelname)s - %(message)s'
)
runpod.serverless.start({"handler": handler}) |