Phoenix07 commited on
Commit
b9d3e18
·
1 Parent(s): 81917a3

initial commit

Browse files
Files changed (4) hide show
  1. agents.py +182 -0
  2. app.py +10 -3
  3. requirements.txt +19 -1
  4. system_prompt.txt +5 -0
agents.py ADDED
@@ -0,0 +1,182 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """LangGraph Agent"""
2
+ import os
3
+ from dotenv import load_dotenv
4
+ from langgraph.graph import START, StateGraph, MessagesState
5
+ from langgraph.prebuilt import tools_condition
6
+ from langgraph.prebuilt import ToolNode
7
+ from langchain_google_genai import ChatGoogleGenerativeAI
8
+ from langchain.agents import initialize_agent, Tool
9
+ from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint, HuggingFaceEmbeddings
10
+ from langchain_community.tools.tavily_search import TavilySearchResults
11
+ from langchain_community.document_loaders import WikipediaLoader
12
+ from langchain_community.document_loaders import ArxivLoader
13
+ from langchain_community.vectorstores import SupabaseVectorStore
14
+ from langchain_core.messages import SystemMessage, HumanMessage
15
+ from langchain_core.tools import tool
16
+ from langchain.tools.retriever import create_retriever_tool
17
+ from supabase.client import Client, create_client
18
+
19
+ load_dotenv()
20
+
21
+ @tool
22
+ def multiply(a: int, b: int) -> int:
23
+ """Multiply two numbers.
24
+ Args:
25
+ a: first int
26
+ b: second int
27
+ """
28
+ return a * b
29
+
30
+ @tool
31
+ def add(a: int, b: int) -> int:
32
+ """Add two numbers.
33
+ Args:
34
+ a: first int
35
+ b: second int
36
+ """
37
+ return a + b
38
+
39
+ @tool
40
+ def subtract(a: int, b: int) -> int:
41
+ """Subtract two numbers.
42
+ Args:
43
+ a: first int
44
+ b: second int
45
+ """
46
+ return a - b
47
+
48
+ @tool
49
+ def divide(a: int, b: int) -> int:
50
+ """Divide two numbers.
51
+ Args:
52
+ a: first int
53
+ b: second int
54
+ """
55
+ if b == 0:
56
+ raise ValueError("Cannot divide by zero.")
57
+ return a / b
58
+
59
+ @tool
60
+ def modulus(a: int, b: int) -> int:
61
+ """Get the modulus of two numbers.
62
+ Args:
63
+ a: first int
64
+ b: second int
65
+ """
66
+ return a % b
67
+
68
+ @tool
69
+ def wiki_search(query: str) -> str:
70
+ """Search Wikipedia for a query and return maximum 2 results.
71
+ Args:
72
+ query: The search query."""
73
+ search_docs = WikipediaLoader(query=query, load_max_docs=2).load()
74
+ formatted_search_docs = "\n\n---\n\n".join(
75
+ [
76
+ f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>'
77
+ for doc in search_docs
78
+ ])
79
+ return {"wiki_results": formatted_search_docs}
80
+
81
+ @tool
82
+ def web_search(query: str) -> str:
83
+ """Search Tavily for a query and return maximum 3 results.
84
+ Args:
85
+ query: The search query."""
86
+ search_docs = TavilySearchResults(max_results=3).invoke(query=query)
87
+ formatted_search_docs = "\n\n---\n\n".join(
88
+ [
89
+ f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>'
90
+ for doc in search_docs
91
+ ])
92
+ return {"web_results": formatted_search_docs}
93
+
94
+ @tool
95
+ def arvix_search(query: str) -> str:
96
+ """Search Arxiv for a query and return maximum 3 result.
97
+ Args:
98
+ query: The search query."""
99
+ search_docs = ArxivLoader(query=query, load_max_docs=3).load()
100
+ formatted_search_docs = "\n\n---\n\n".join(
101
+ [
102
+ f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content[:1000]}\n</Document>'
103
+ for doc in search_docs
104
+ ])
105
+ return {"arvix_results": formatted_search_docs}
106
+
107
+
108
+
109
+ # load the system prompt from the file
110
+ with open("system_prompt.txt", "r", encoding="utf-8") as f:
111
+ system_prompt = f.read()
112
+
113
+ # System message
114
+ sys_msg = SystemMessage(content=system_prompt)
115
+
116
+ # build a retriever
117
+ embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2") # dim=768
118
+ supabase: Client = create_client(
119
+ os.environ.get("SUPABASE_URL"),
120
+ os.environ.get("SUPABASE_SERVICE_KEY"))
121
+ vector_store = SupabaseVectorStore(
122
+ client=supabase,
123
+ embedding= embeddings,
124
+ table_name="documents",
125
+ query_name="match_documents_langchain",
126
+ )
127
+ create_retriever_tool = create_retriever_tool(
128
+ retriever=vector_store.as_retriever(),
129
+ name="Question Search",
130
+ description="A tool to retrieve similar questions from a vector store.",
131
+ )
132
+
133
+
134
+
135
+ tools = [
136
+ multiply,
137
+ add,
138
+ subtract,
139
+ divide,
140
+ modulus,
141
+ wiki_search,
142
+ web_search,
143
+ arvix_search,
144
+ ]
145
+
146
+ # Build graph function
147
+ def build_graph(provider: str = "groq"):
148
+ """Build the graph"""
149
+
150
+ # Google Gemini
151
+ llm = ChatGoogleGenerativeAI(model="gemini-2.0-flash", temperature=0)
152
+
153
+ # Bind tools to LLM
154
+ llm_with_tools = llm.bind_tools(tools)
155
+
156
+ # Node
157
+ def assistant(state: MessagesState):
158
+ """Assistant node"""
159
+ return {"messages": [llm_with_tools.invoke(state["messages"])]}
160
+
161
+ def retriever(state: MessagesState):
162
+ """Retriever node"""
163
+ similar_question = vector_store.similarity_search(state["messages"][0].content)
164
+ example_msg = HumanMessage(
165
+ content=f"Here I provide a similar question and answer for reference: \n\n{similar_question[0].page_content}",
166
+ )
167
+ return {"messages": [sys_msg] + state["messages"] + [example_msg]}
168
+
169
+ builder = StateGraph(MessagesState)
170
+ builder.add_node("retriever", retriever)
171
+ builder.add_node("assistant", assistant)
172
+ builder.add_node("tools", ToolNode(tools))
173
+ builder.add_edge(START, "retriever")
174
+ builder.add_edge("retriever", "assistant")
175
+ builder.add_conditional_edges(
176
+ "assistant",
177
+ tools_condition,
178
+ )
179
+ builder.add_edge("tools", "assistant")
180
+
181
+ # Compile graph
182
+ return builder.compile()
app.py CHANGED
@@ -3,6 +3,8 @@ import gradio as gr
3
  import requests
4
  import inspect
5
  import pandas as pd
 
 
6
 
7
  # (Keep Constants as is)
8
  # --- Constants ---
@@ -11,13 +13,18 @@ DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
11
  # --- Basic Agent Definition ---
12
  # ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
13
  class BasicAgent:
 
14
  def __init__(self):
15
  print("BasicAgent initialized.")
 
 
16
  def __call__(self, question: str) -> str:
17
  print(f"Agent received question (first 50 chars): {question[:50]}...")
18
- fixed_answer = "This is a default answer."
19
- print(f"Agent returning fixed answer: {fixed_answer}")
20
- return fixed_answer
 
 
21
 
22
  def run_and_submit_all( profile: gr.OAuthProfile | None):
23
  """
 
3
  import requests
4
  import inspect
5
  import pandas as pd
6
+ from langchain_core.messages import HumanMessage
7
+ from agents import build_graph
8
 
9
  # (Keep Constants as is)
10
  # --- Constants ---
 
13
  # --- Basic Agent Definition ---
14
  # ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
15
  class BasicAgent:
16
+ """A langgraph agent."""
17
  def __init__(self):
18
  print("BasicAgent initialized.")
19
+ self.graph = build_graph()
20
+
21
  def __call__(self, question: str) -> str:
22
  print(f"Agent received question (first 50 chars): {question[:50]}...")
23
+ # Wrap the question in a HumanMessage from langchain_core
24
+ messages = [HumanMessage(content=question)]
25
+ messages = self.graph.invoke({"messages": messages})
26
+ answer = messages['messages'][-1].content
27
+ return answer[14:]
28
 
29
  def run_and_submit_all( profile: gr.OAuthProfile | None):
30
  """
requirements.txt CHANGED
@@ -1,2 +1,20 @@
1
  gradio
2
- requests
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  gradio
2
+ requests
3
+ langchain
4
+ langchain-community
5
+ langchain-core
6
+ langchain-google-genai
7
+ langchain-huggingface
8
+ langchain-tavily
9
+ langchain-chroma
10
+ langgraph
11
+ huggingface_hub
12
+ supabase
13
+ arxiv
14
+ pymupdf
15
+ wikipedia
16
+ pgvector
17
+ python-dotenv
18
+ pandas
19
+ sentence-transformers
20
+ langchain-tools
system_prompt.txt ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ You are a helpful assistant tasked with answering questions using a set of tools.
2
+ Now, I will ask you a question. Report your thoughts, and finish your answer with the following template:
3
+ FINAL ANSWER: [YOUR FINAL ANSWER].
4
+ YOUR FINAL ANSWER should be a number OR as few words as possible OR a comma separated list of numbers and/or strings. If you are asked for a number, don't use comma to write your number neither use units such as $ or percent sign unless specified otherwise. If you are asked for a string, don't use articles, neither abbreviations (e.g. for cities), and write the digits in plain text unless specified otherwise. If you are asked for a comma separated list, apply the above rules depending of whether the element to be put in the list is a number or a string.
5
+ Your answer should only start with "FINAL ANSWER: ", then follows with the answer.