Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,623 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from langchain_groq import ChatGroq
|
2 |
+
from langgraph.graph import StateGraph, START, END
|
3 |
+
from IPython.display import Image, display, Markdown
|
4 |
+
from typing_extensions import TypedDict
|
5 |
+
from langgraph.constants import Send
|
6 |
+
from langchain_core.messages import HumanMessage, SystemMessage
|
7 |
+
from langchain_community.tools.tavily_search import TavilySearchResults
|
8 |
+
import os
|
9 |
+
import getpass
|
10 |
+
from typing import Annotated, List, Dict, Any
|
11 |
+
import operator
|
12 |
+
from pydantic import BaseModel, Field
|
13 |
+
from datetime import datetime
|
14 |
+
import requests
|
15 |
+
from bs4 import BeautifulSoup
|
16 |
+
import re
|
17 |
+
import json
|
18 |
+
import gradio as gr
|
19 |
+
from langdetect import detect
|
20 |
+
|
21 |
+
# Define models for structured output
|
22 |
+
class NewsItem(BaseModel):
|
23 |
+
title: str = Field(description="Title of the AI news article")
|
24 |
+
url: str = Field(description="URL of the news article")
|
25 |
+
source: str = Field(description="Source website of the news")
|
26 |
+
description: str = Field(description="Brief description of the news article")
|
27 |
+
|
28 |
+
class NewsResults(BaseModel):
|
29 |
+
news_items: List[NewsItem] = Field(description="List of AI news articles found")
|
30 |
+
|
31 |
+
class Subsection(BaseModel):
|
32 |
+
title: str = Field(description="Title of the subsection (based on news item title)")
|
33 |
+
source: str = Field(description="Source of the news item")
|
34 |
+
url: str = Field(description="URL of the news item")
|
35 |
+
content: str = Field(description="Content for this subsection")
|
36 |
+
|
37 |
+
class Section(BaseModel):
|
38 |
+
name: str = Field(description="Name for this section of the blog")
|
39 |
+
description: str = Field(description="Description for this section of the blog")
|
40 |
+
information: str = Field(description="Information which should be included in this section of the blog")
|
41 |
+
subsections: List[Subsection] = Field(description="Subsections for each news item in this category", default=[])
|
42 |
+
|
43 |
+
class Sections(BaseModel):
|
44 |
+
sections: List[Section] = Field(description="List of sections for this blog")
|
45 |
+
|
46 |
+
# State definitions
|
47 |
+
class NewsState(TypedDict):
|
48 |
+
query: str
|
49 |
+
date: str
|
50 |
+
search_results: List[Dict[str, Any]]
|
51 |
+
news_items: List[Dict[str, Any]]
|
52 |
+
|
53 |
+
class BlogState(TypedDict):
|
54 |
+
content: str
|
55 |
+
sections: List[Section]
|
56 |
+
completed_sections: Annotated[List, operator.add]
|
57 |
+
final_report: str
|
58 |
+
|
59 |
+
class WorkerState(TypedDict):
|
60 |
+
section: Section
|
61 |
+
completed_sections: Annotated[List, operator.add]
|
62 |
+
|
63 |
+
class ArticleScraperState(TypedDict):
|
64 |
+
url: str
|
65 |
+
article_content: str
|
66 |
+
|
67 |
+
# Helper function to detect English language
|
68 |
+
def is_english(text):
|
69 |
+
try:
|
70 |
+
return detect(text) == 'en'
|
71 |
+
except:
|
72 |
+
# If detection fails, check for common English words
|
73 |
+
common_english_words = ['the', 'and', 'in', 'to', 'of', 'is', 'for', 'with', 'on', 'that']
|
74 |
+
text_lower = text.lower()
|
75 |
+
english_word_count = sum(1 for word in common_english_words if f" {word} " in f" {text_lower} ")
|
76 |
+
return english_word_count >= 3 # If at least 3 common English words are found
|
77 |
+
|
78 |
+
# News search functions
|
79 |
+
def search_ai_news(state: NewsState):
|
80 |
+
"""Search for the latest AI news using Tavily"""
|
81 |
+
search_tool = TavilySearchResults(max_results=10)
|
82 |
+
|
83 |
+
# Format today's date
|
84 |
+
today = state.get("date", datetime.now().strftime("%Y-%m-%d"))
|
85 |
+
|
86 |
+
# Create search query with date to get recent news
|
87 |
+
query = f"latest artificial intelligence news {today} english"
|
88 |
+
|
89 |
+
# Execute search
|
90 |
+
search_results = search_tool.invoke({"query": query})
|
91 |
+
|
92 |
+
# Filter out YouTube results and non-English content
|
93 |
+
filtered_results = []
|
94 |
+
for result in search_results:
|
95 |
+
if "youtube.com" not in result.get("url", "").lower():
|
96 |
+
# Check if content is in English
|
97 |
+
content = result.get("content", "") + " " + result.get("title", "")
|
98 |
+
if is_english(content):
|
99 |
+
filtered_results.append(result)
|
100 |
+
|
101 |
+
return {"search_results": filtered_results}
|
102 |
+
|
103 |
+
def parse_news_items(state: NewsState):
|
104 |
+
"""Parse search results into structured news items using a more robust approach"""
|
105 |
+
search_results = state["search_results"]
|
106 |
+
|
107 |
+
# Format results for the LLM
|
108 |
+
formatted_results = "\n\n".join([
|
109 |
+
f"Title: {result.get('title', 'No title')}\n"
|
110 |
+
f"URL: {result.get('url', 'No URL')}\n"
|
111 |
+
f"Content: {result.get('content', 'No content')}"
|
112 |
+
for result in search_results
|
113 |
+
])
|
114 |
+
|
115 |
+
# Use a direct prompt instead of structured output
|
116 |
+
system_prompt = """
|
117 |
+
Extract AI news articles from these search results. Filter out any that aren't about artificial intelligence.
|
118 |
+
|
119 |
+
For each relevant AI news article, provide:
|
120 |
+
- title: The title of the article
|
121 |
+
- url: The URL of the article
|
122 |
+
- source: The source website of the news
|
123 |
+
- description: A brief description of the article
|
124 |
+
|
125 |
+
Format your response as a JSON list of objects. Only include the relevant fields, nothing else.
|
126 |
+
Example format:
|
127 |
+
[
|
128 |
+
{
|
129 |
+
"title": "New AI Development",
|
130 |
+
"url": "https://example.com/news/ai-dev",
|
131 |
+
"source": "Example News",
|
132 |
+
"description": "Description of the AI development"
|
133 |
+
}
|
134 |
+
]
|
135 |
+
"""
|
136 |
+
|
137 |
+
# Get the response as a string
|
138 |
+
response = llm.invoke([
|
139 |
+
SystemMessage(content=system_prompt),
|
140 |
+
HumanMessage(content=f"Here are the search results:\n\n{formatted_results}")
|
141 |
+
])
|
142 |
+
|
143 |
+
# Extract the JSON part from the response
|
144 |
+
response_text = response.content
|
145 |
+
|
146 |
+
# Find JSON list in the response
|
147 |
+
json_match = re.search(r'\[\s*\{.*\}\s*\]', response_text, re.DOTALL)
|
148 |
+
|
149 |
+
news_items = []
|
150 |
+
if json_match:
|
151 |
+
try:
|
152 |
+
# Parse the JSON text
|
153 |
+
news_items = json.loads(json_match.group(0))
|
154 |
+
except json.JSONDecodeError:
|
155 |
+
# Fallback: create a simple item if JSON parsing fails
|
156 |
+
news_items = [{
|
157 |
+
"title": "AI News Roundup",
|
158 |
+
"url": "https://example.com/ai-news",
|
159 |
+
"source": "Various Sources",
|
160 |
+
"description": "Compilation of latest AI news from various sources."
|
161 |
+
}]
|
162 |
+
else:
|
163 |
+
# Create a default item if no JSON found
|
164 |
+
news_items = [{
|
165 |
+
"title": "AI News Roundup",
|
166 |
+
"url": "https://example.com/ai-news",
|
167 |
+
"source": "Various Sources",
|
168 |
+
"description": "Compilation of latest AI news from various sources."
|
169 |
+
}]
|
170 |
+
|
171 |
+
return {"news_items": news_items}
|
172 |
+
|
173 |
+
# Article scraping function
|
174 |
+
def scrape_article_content(state: ArticleScraperState):
|
175 |
+
"""Scrape the content from a news article URL"""
|
176 |
+
url = state["url"]
|
177 |
+
|
178 |
+
try:
|
179 |
+
headers = {
|
180 |
+
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36'
|
181 |
+
}
|
182 |
+
response = requests.get(url, headers=headers, timeout=10)
|
183 |
+
response.raise_for_status()
|
184 |
+
|
185 |
+
soup = BeautifulSoup(response.text, 'html.parser')
|
186 |
+
|
187 |
+
# Extract article content
|
188 |
+
article_text = ""
|
189 |
+
|
190 |
+
# Try to find the main article content
|
191 |
+
article = soup.find('article')
|
192 |
+
if article:
|
193 |
+
paragraphs = article.find_all('p')
|
194 |
+
else:
|
195 |
+
# Fallback to all paragraphs
|
196 |
+
paragraphs = soup.find_all('p')
|
197 |
+
|
198 |
+
# Extract text from paragraphs
|
199 |
+
article_text = "\n\n".join([p.get_text().strip() for p in paragraphs])
|
200 |
+
|
201 |
+
# Clean up the text
|
202 |
+
article_text = re.sub(r'\s+', ' ', article_text).strip()
|
203 |
+
|
204 |
+
# Trim to reasonable length for LLM processing
|
205 |
+
if len(article_text) > 10000:
|
206 |
+
article_text = article_text[:10000] + "..."
|
207 |
+
|
208 |
+
# Verify the content is in English
|
209 |
+
if not is_english(article_text[:500]): # Check first 500 chars to save processing time
|
210 |
+
return {"article_content": "Content not in English or insufficient text to analyze."}
|
211 |
+
|
212 |
+
return {"article_content": article_text}
|
213 |
+
|
214 |
+
except Exception as e:
|
215 |
+
return {"article_content": f"Error scraping article: {str(e)}"}
|
216 |
+
|
217 |
+
# Blog generation functions
|
218 |
+
def orchestrator(state: BlogState):
|
219 |
+
"""Orchestrator that generates a plan for the blog based on news items"""
|
220 |
+
|
221 |
+
try:
|
222 |
+
# Parse the content to extract news items
|
223 |
+
content_lines = state['content'].split('\n\n')
|
224 |
+
news_items = []
|
225 |
+
current_item = {}
|
226 |
+
|
227 |
+
for content_block in content_lines:
|
228 |
+
if content_block.startswith('TITLE:'):
|
229 |
+
# Start of a new item
|
230 |
+
if current_item and 'title' in current_item:
|
231 |
+
news_items.append(current_item)
|
232 |
+
current_item = {}
|
233 |
+
|
234 |
+
lines = content_block.split('\n')
|
235 |
+
for line in lines:
|
236 |
+
if line.startswith('TITLE:'):
|
237 |
+
current_item['title'] = line.replace('TITLE:', '').strip()
|
238 |
+
elif line.startswith('SOURCE:'):
|
239 |
+
current_item['source'] = line.replace('SOURCE:', '').strip()
|
240 |
+
elif line.startswith('URL:'):
|
241 |
+
current_item['url'] = line.replace('URL:', '').strip()
|
242 |
+
elif line.startswith('DESCRIPTION:'):
|
243 |
+
current_item['description'] = line.replace('DESCRIPTION:', '').strip()
|
244 |
+
elif line.startswith('CONTENT:'):
|
245 |
+
current_item['content'] = line.replace('CONTENT:', '').strip()
|
246 |
+
elif 'content' in current_item:
|
247 |
+
# Add to existing content
|
248 |
+
current_item['content'] += ' ' + content_block
|
249 |
+
|
250 |
+
# Add the last item
|
251 |
+
if current_item and 'title' in current_item:
|
252 |
+
news_items.append(current_item)
|
253 |
+
|
254 |
+
# Group news items by category
|
255 |
+
ai_tech_items = []
|
256 |
+
ai_business_items = []
|
257 |
+
ai_research_items = []
|
258 |
+
|
259 |
+
for item in news_items:
|
260 |
+
title = item.get('title', '').lower()
|
261 |
+
description = item.get('description', '').lower()
|
262 |
+
|
263 |
+
# Simple categorization based on keywords
|
264 |
+
if any(kw in title + description for kw in ['business', 'market', 'company', 'investment', 'startup']):
|
265 |
+
ai_business_items.append(item)
|
266 |
+
elif any(kw in title + description for kw in ['research', 'study', 'paper', 'university']):
|
267 |
+
ai_research_items.append(item)
|
268 |
+
else:
|
269 |
+
ai_tech_items.append(item)
|
270 |
+
|
271 |
+
# Create sections with subsections
|
272 |
+
sections = []
|
273 |
+
|
274 |
+
# AI Technology section
|
275 |
+
if ai_tech_items:
|
276 |
+
tech_subsections = [
|
277 |
+
Subsection(
|
278 |
+
title=item['title'],
|
279 |
+
source=item['source'],
|
280 |
+
url=item['url'],
|
281 |
+
content=f"{item.get('description', '')} {item.get('content', '')[:500]}..."
|
282 |
+
) for item in ai_tech_items
|
283 |
+
]
|
284 |
+
|
285 |
+
sections.append(Section(
|
286 |
+
name="AI Technology Developments",
|
287 |
+
description="Recent advancements in AI technology and applications",
|
288 |
+
information="Cover the latest developments in AI technology.",
|
289 |
+
subsections=tech_subsections
|
290 |
+
))
|
291 |
+
|
292 |
+
# AI Business section
|
293 |
+
if ai_business_items:
|
294 |
+
business_subsections = [
|
295 |
+
Subsection(
|
296 |
+
title=item['title'],
|
297 |
+
source=item['source'],
|
298 |
+
url=item['url'],
|
299 |
+
content=f"{item.get('description', '')} {item.get('content', '')[:500]}..."
|
300 |
+
) for item in ai_business_items
|
301 |
+
]
|
302 |
+
|
303 |
+
sections.append(Section(
|
304 |
+
name="AI in Business",
|
305 |
+
description="How AI is transforming industries and markets",
|
306 |
+
information="Focus on business applications and market trends in AI.",
|
307 |
+
subsections=business_subsections
|
308 |
+
))
|
309 |
+
|
310 |
+
# AI Research section
|
311 |
+
if ai_research_items:
|
312 |
+
research_subsections = [
|
313 |
+
Subsection(
|
314 |
+
title=item['title'],
|
315 |
+
source=item['source'],
|
316 |
+
url=item['url'],
|
317 |
+
content=f"{item.get('description', '')} {item.get('content', '')[:500]}..."
|
318 |
+
) for item in ai_research_items
|
319 |
+
]
|
320 |
+
|
321 |
+
sections.append(Section(
|
322 |
+
name="AI Research and Studies",
|
323 |
+
description="Latest research findings and academic work in AI",
|
324 |
+
information="Cover recent research papers and studies in AI.",
|
325 |
+
subsections=research_subsections
|
326 |
+
))
|
327 |
+
|
328 |
+
# If no items were categorized, create a general section
|
329 |
+
if not sections:
|
330 |
+
general_subsections = [
|
331 |
+
Subsection(
|
332 |
+
title=item['title'],
|
333 |
+
source=item['source'],
|
334 |
+
url=item['url'],
|
335 |
+
content=f"{item.get('description', '')} {item.get('content', '')[:500]}..."
|
336 |
+
) for item in news_items
|
337 |
+
]
|
338 |
+
|
339 |
+
sections.append(Section(
|
340 |
+
name="Latest AI News",
|
341 |
+
description="Roundup of the latest AI news from around the web",
|
342 |
+
information="Cover a range of AI news topics.",
|
343 |
+
subsections=general_subsections
|
344 |
+
))
|
345 |
+
|
346 |
+
return {"sections": sections}
|
347 |
+
except Exception as e:
|
348 |
+
print(f"Error in orchestrator: {str(e)}")
|
349 |
+
# Fallback plan if structured output fails
|
350 |
+
fallback_sections = [
|
351 |
+
Section(
|
352 |
+
name="Latest AI Developments",
|
353 |
+
description="Overview of recent AI advancements and research",
|
354 |
+
information="Summarize the latest AI developments from the provided content.",
|
355 |
+
subsections=[]
|
356 |
+
)
|
357 |
+
]
|
358 |
+
return {"sections": fallback_sections}
|
359 |
+
|
360 |
+
def llm_call(state: WorkerState):
|
361 |
+
"""Worker writes a section of the blog with subsections for each news item"""
|
362 |
+
|
363 |
+
section = state['section']
|
364 |
+
|
365 |
+
# Generate section header with ID for anchor linking
|
366 |
+
section_id = section.name.lower().replace(' ', '-')
|
367 |
+
section_header = f"## {section.name} {{#{section_id}}}\n\n{section.description}\n"
|
368 |
+
|
369 |
+
# If there are subsections, process each one
|
370 |
+
subsections_content = ""
|
371 |
+
if section.subsections:
|
372 |
+
for idx, subsection in enumerate(section.subsections):
|
373 |
+
# Generate subsection using LLM
|
374 |
+
subsection_prompt = f"""
|
375 |
+
Write a detailed subsection about this AI news item:
|
376 |
+
Title: {subsection.title}
|
377 |
+
Source: {subsection.source}
|
378 |
+
URL: {subsection.url}
|
379 |
+
|
380 |
+
Content to summarize and expand on:
|
381 |
+
{subsection.content}
|
382 |
+
|
383 |
+
Keep your response focused on the news item and make it engaging. Use markdown formatting.
|
384 |
+
"""
|
385 |
+
|
386 |
+
subsection_content = llm.invoke([
|
387 |
+
SystemMessage(content="You are writing a subsection for an AI news blog. Write in a professional but engaging style. Include key details and insights. Use markdown formatting."),
|
388 |
+
HumanMessage(content=subsection_prompt)
|
389 |
+
])
|
390 |
+
|
391 |
+
# Create a clean ID for the subsection
|
392 |
+
subsection_id = f"{section_id}-{idx+1}-{subsection.title.lower().replace(' ', '-').replace(':', '').replace('?', '').replace('!', '')}"
|
393 |
+
|
394 |
+
# Format subsection with title and source
|
395 |
+
formatted_subsection = f"### {subsection.title} {{#{subsection_id}}}\n\n"
|
396 |
+
formatted_subsection += f"*Source: [{subsection.source}]({subsection.url})*\n\n"
|
397 |
+
formatted_subsection += subsection_content.content
|
398 |
+
|
399 |
+
subsections_content += formatted_subsection + "\n\n"
|
400 |
+
else:
|
401 |
+
# If no subsections, generate the full section content
|
402 |
+
section_content = llm.invoke([
|
403 |
+
SystemMessage(content="Write a blog section following the provided name, description, and information. Include no preamble. Use markdown formatting."),
|
404 |
+
HumanMessage(content=f"Here is the section name: {section.name}\nDescription: {section.description}\nInformation: {section.information}")
|
405 |
+
])
|
406 |
+
subsections_content = section_content.content
|
407 |
+
|
408 |
+
# Combine section header and subsections
|
409 |
+
complete_section = section_header + subsections_content
|
410 |
+
|
411 |
+
# Return the completed section
|
412 |
+
return {"completed_sections": [complete_section]}
|
413 |
+
|
414 |
+
def synthesizer(state: BlogState):
|
415 |
+
"""Synthesize full blog from sections with proper formatting and hierarchical TOC"""
|
416 |
+
|
417 |
+
# List of completed sections
|
418 |
+
completed_sections = state["completed_sections"]
|
419 |
+
|
420 |
+
# Format completed sections into a full blog post
|
421 |
+
completed_report = "\n\n".join(completed_sections)
|
422 |
+
|
423 |
+
# Add title, date, and introduction
|
424 |
+
today = datetime.now().strftime("%Y-%m-%d")
|
425 |
+
blog_title = f"# AI News Roundup - {today}"
|
426 |
+
|
427 |
+
# Generate a brief introduction
|
428 |
+
intro = llm.invoke([
|
429 |
+
SystemMessage(content="Write a brief introduction for an AI news roundup blog post. Keep it under 100 words. Be engaging and professional."),
|
430 |
+
HumanMessage(content=f"Today's date is {today}. Write a brief introduction for an AI news roundup.")
|
431 |
+
])
|
432 |
+
|
433 |
+
# Create hierarchical table of contents
|
434 |
+
table_of_contents = "## Table of Contents\n\n"
|
435 |
+
|
436 |
+
# Find all section headings (## headings)
|
437 |
+
section_matches = re.findall(r'## (.*?) {#(.*?)}', completed_report)
|
438 |
+
|
439 |
+
for i, (section_name, section_id) in enumerate(section_matches, 1):
|
440 |
+
# Add section to TOC
|
441 |
+
table_of_contents += f"{i}. [{section_name}](#{section_id})\n"
|
442 |
+
|
443 |
+
# Find all subsections within this section
|
444 |
+
# Look for subsection headings (### headings) until the next section or end of text
|
445 |
+
section_start = completed_report.find(f"## {section_name}")
|
446 |
+
next_section_match = re.search(r'## ', completed_report[section_start+1:])
|
447 |
+
if next_section_match:
|
448 |
+
section_end = section_start + 1 + next_section_match.start()
|
449 |
+
section_text = completed_report[section_start:section_end]
|
450 |
+
else:
|
451 |
+
section_text = completed_report[section_start:]
|
452 |
+
|
453 |
+
# Extract subsection headings and IDs
|
454 |
+
subsection_matches = re.findall(r'### (.*?) {#(.*?)}', section_text)
|
455 |
+
|
456 |
+
for j, (subsection_name, subsection_id) in enumerate(subsection_matches, 1):
|
457 |
+
# Add subsection to TOC with proper indentation
|
458 |
+
table_of_contents += f" {i}.{j}. [{subsection_name}](#{subsection_id})\n"
|
459 |
+
|
460 |
+
final_report = f"{blog_title}\n\n{intro.content}\n\n{table_of_contents}\n\n---\n\n{completed_report}\n\n---\n\n*This AI News Roundup was automatically generated on {today}.*"
|
461 |
+
|
462 |
+
return {"final_report": final_report}
|
463 |
+
|
464 |
+
# Edge function to create workers for each section
|
465 |
+
def assign_workers(state: BlogState):
|
466 |
+
"""Assign a worker to each section in the plan"""
|
467 |
+
|
468 |
+
# Kick off section writing in parallel
|
469 |
+
return [Send("llm_call", {"section": s}) for s in state["sections"]]
|
470 |
+
|
471 |
+
# Main workflow functions
|
472 |
+
def create_news_search_workflow():
|
473 |
+
"""Create a workflow for searching and parsing AI news"""
|
474 |
+
workflow = StateGraph(NewsState)
|
475 |
+
|
476 |
+
# Add nodes
|
477 |
+
workflow.add_node("search_ai_news", search_ai_news)
|
478 |
+
workflow.add_node("parse_news_items", parse_news_items)
|
479 |
+
|
480 |
+
# Add edges
|
481 |
+
workflow.add_edge(START, "search_ai_news")
|
482 |
+
workflow.add_edge("search_ai_news", "parse_news_items")
|
483 |
+
workflow.add_edge("parse_news_items", END)
|
484 |
+
|
485 |
+
return workflow.compile()
|
486 |
+
|
487 |
+
def create_article_scraper_workflow():
|
488 |
+
"""Create a workflow for scraping article content"""
|
489 |
+
workflow = StateGraph(ArticleScraperState)
|
490 |
+
|
491 |
+
# Add node
|
492 |
+
workflow.add_node("scrape_article", scrape_article_content)
|
493 |
+
|
494 |
+
# Add edges
|
495 |
+
workflow.add_edge(START, "scrape_article")
|
496 |
+
workflow.add_edge("scrape_article", END)
|
497 |
+
|
498 |
+
return workflow.compile()
|
499 |
+
|
500 |
+
def create_blog_generator_workflow():
|
501 |
+
"""Create a workflow for generating the blog"""
|
502 |
+
workflow = StateGraph(BlogState)
|
503 |
+
|
504 |
+
# Add nodes
|
505 |
+
workflow.add_node("orchestrator", orchestrator)
|
506 |
+
workflow.add_node("llm_call", llm_call)
|
507 |
+
workflow.add_node("synthesizer", synthesizer)
|
508 |
+
|
509 |
+
# Add edges
|
510 |
+
workflow.add_edge(START, "orchestrator")
|
511 |
+
workflow.add_conditional_edges("orchestrator", assign_workers, ["llm_call"])
|
512 |
+
workflow.add_edge("llm_call", "synthesizer")
|
513 |
+
workflow.add_edge("synthesizer", END)
|
514 |
+
|
515 |
+
return workflow.compile()
|
516 |
+
|
517 |
+
def generate_ai_news_blog(groq_api_key=None, tavily_api_key=None, date=None):
|
518 |
+
"""Main function to generate AI news blog"""
|
519 |
+
# Set API keys if provided
|
520 |
+
if groq_api_key:
|
521 |
+
os.environ["GROQ_API_KEY"] = groq_api_key
|
522 |
+
if tavily_api_key:
|
523 |
+
os.environ["TAVILY_API_KEY"] = tavily_api_key
|
524 |
+
|
525 |
+
# Initialize LLM with the API key
|
526 |
+
global llm
|
527 |
+
llm = ChatGroq(model="qwen-2.5-32b")
|
528 |
+
|
529 |
+
# Get date
|
530 |
+
if not date:
|
531 |
+
today = datetime.now().strftime("%Y-%m-%d")
|
532 |
+
else:
|
533 |
+
today = date
|
534 |
+
|
535 |
+
# Step 1: Search for AI news
|
536 |
+
news_search = create_news_search_workflow()
|
537 |
+
news_results = news_search.invoke({"query": "latest artificial intelligence news", "date": today})
|
538 |
+
|
539 |
+
print(f"Found {len(news_results['news_items'])} AI news items")
|
540 |
+
|
541 |
+
# Step 2: Scrape content for each news item
|
542 |
+
article_scraper = create_article_scraper_workflow()
|
543 |
+
news_contents = []
|
544 |
+
|
545 |
+
for item in news_results["news_items"]:
|
546 |
+
print(f"Scraping: {item['title']} from {item['source']}")
|
547 |
+
result = article_scraper.invoke({"url": item['url']})
|
548 |
+
|
549 |
+
# Skip if not in English
|
550 |
+
if "not in English" in result["article_content"]:
|
551 |
+
print(f"Skipping non-English content: {item['title']}")
|
552 |
+
continue
|
553 |
+
|
554 |
+
news_contents.append({
|
555 |
+
"title": item['title'],
|
556 |
+
"url": item['url'],
|
557 |
+
"source": item['source'],
|
558 |
+
"description": item['description'],
|
559 |
+
"content": result["article_content"]
|
560 |
+
})
|
561 |
+
|
562 |
+
# Format news content for the blog generator
|
563 |
+
formatted_content = "\n\n".join([
|
564 |
+
f"TITLE: {item['title']}\nSOURCE: {item['source']}\nURL: {item['url']}\nDESCRIPTION: {item['description']}\nCONTENT: {item['content'][:2000]}..."
|
565 |
+
for item in news_contents
|
566 |
+
])
|
567 |
+
|
568 |
+
# Step 3: Generate the blog
|
569 |
+
blog_generator = create_blog_generator_workflow()
|
570 |
+
blog_result = blog_generator.invoke({
|
571 |
+
"content": formatted_content,
|
572 |
+
"completed_sections": []
|
573 |
+
})
|
574 |
+
|
575 |
+
return blog_result["final_report"]
|
576 |
+
|
577 |
+
# Gradio UI
|
578 |
+
def create_gradio_interface():
|
579 |
+
"""Create a Gradio interface for the AI News Blog Generator"""
|
580 |
+
|
581 |
+
def run_generation(groq_key, tavily_key, selected_date):
|
582 |
+
if not groq_key or not tavily_key:
|
583 |
+
return "Please provide both API keys."
|
584 |
+
|
585 |
+
try:
|
586 |
+
result = generate_ai_news_blog(groq_key, tavily_key, selected_date)
|
587 |
+
return result
|
588 |
+
except Exception as e:
|
589 |
+
return f"Error generating blog: {str(e)}"
|
590 |
+
|
591 |
+
# Create the interface
|
592 |
+
with gr.Blocks(title="AI News Blog Generator") as demo:
|
593 |
+
gr.Markdown("# AI News Blog Generator")
|
594 |
+
gr.Markdown("Generate a daily roundup of AI news articles, categorized by topic.")
|
595 |
+
|
596 |
+
with gr.Row():
|
597 |
+
with gr.Column():
|
598 |
+
groq_key = gr.Textbox(label="Groq API Key", placeholder="Enter your Groq API key", type="password")
|
599 |
+
tavily_key = gr.Textbox(label="Tavily API Key", placeholder="Enter your Tavily API key", type="password")
|
600 |
+
date_picker = gr.Textbox(label="Date (YYYY-MM-DD)", placeholder="Leave empty for today's date",
|
601 |
+
value=datetime.now().strftime("%Y-%m-%d"))
|
602 |
+
generate_button = gr.Button("Generate AI News Blog")
|
603 |
+
|
604 |
+
with gr.Column():
|
605 |
+
output_md = gr.Markdown("Your AI News Blog will appear here.")
|
606 |
+
|
607 |
+
generate_button.click(
|
608 |
+
fn=run_generation,
|
609 |
+
inputs=[groq_key, tavily_key, date_picker],
|
610 |
+
outputs=output_md
|
611 |
+
)
|
612 |
+
|
613 |
+
return demo
|
614 |
+
|
615 |
+
# Run the entire pipeline
|
616 |
+
if __name__ == "__main__":
|
617 |
+
try:
|
618 |
+
# Create and launch the Gradio interface
|
619 |
+
demo = create_gradio_interface()
|
620 |
+
demo.launch()
|
621 |
+
|
622 |
+
except Exception as e:
|
623 |
+
print(f"Error running the pipeline: {str(e)}")
|