Spaces:
Sleeping
Sleeping
Update pipeline.py
Browse files- pipeline.py +54 -3
pipeline.py
CHANGED
|
@@ -16,9 +16,6 @@ from refusal_chain import get_refusal_chain
|
|
| 16 |
from tailor_chain import get_tailor_chain
|
| 17 |
from cleaner_chain import get_cleaner_chain, CleanerChain
|
| 18 |
|
| 19 |
-
# We also import the relevant RAG logic here or define it directly
|
| 20 |
-
# (We define build_rag_chain in this file for clarity)
|
| 21 |
-
|
| 22 |
# 1) Environment: set up keys if missing
|
| 23 |
if not os.environ.get("GEMINI_API_KEY"):
|
| 24 |
os.environ["GEMINI_API_KEY"] = getpass.getpass("Enter your Gemini API Key: ")
|
|
@@ -55,8 +52,52 @@ def extract_main_topic(query: str) -> str:
|
|
| 55 |
return main_topic if main_topic else "this topic"
|
| 56 |
|
| 57 |
# 3) build_or_load_vectorstore (no changes)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 58 |
|
| 59 |
# 4) Build RAG chain for Gemini (no changes)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 60 |
|
| 61 |
# 5) Initialize all the separate chains
|
| 62 |
classification_chain = get_classification_chain()
|
|
@@ -78,6 +119,16 @@ wellness_rag_chain = build_rag_chain(gemini_llm, wellness_vectorstore)
|
|
| 78 |
brand_rag_chain = build_rag_chain(gemini_llm, brand_vectorstore)
|
| 79 |
|
| 80 |
# 7) Tools / Agents for web search (no changes)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 81 |
|
| 82 |
# 8) Orchestrator: run_with_chain
|
| 83 |
def run_with_chain(query: str) -> str:
|
|
|
|
| 16 |
from tailor_chain import get_tailor_chain
|
| 17 |
from cleaner_chain import get_cleaner_chain, CleanerChain
|
| 18 |
|
|
|
|
|
|
|
|
|
|
| 19 |
# 1) Environment: set up keys if missing
|
| 20 |
if not os.environ.get("GEMINI_API_KEY"):
|
| 21 |
os.environ["GEMINI_API_KEY"] = getpass.getpass("Enter your Gemini API Key: ")
|
|
|
|
| 52 |
return main_topic if main_topic else "this topic"
|
| 53 |
|
| 54 |
# 3) build_or_load_vectorstore (no changes)
|
| 55 |
+
def build_or_load_vectorstore(csv_path: str, store_dir: str) -> FAISS:
|
| 56 |
+
if os.path.exists(store_dir):
|
| 57 |
+
print(f"DEBUG: Found existing FAISS store at '{store_dir}'. Loading...")
|
| 58 |
+
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/multi-qa-mpnet-base-dot-v1")
|
| 59 |
+
vectorstore = FAISS.load_local(store_dir, embeddings)
|
| 60 |
+
return vectorstore
|
| 61 |
+
else:
|
| 62 |
+
print(f"DEBUG: Building new store from CSV: {csv_path}")
|
| 63 |
+
df = pd.read_csv(csv_path)
|
| 64 |
+
df = df.loc[:, ~df.columns.str.contains('^Unnamed')]
|
| 65 |
+
df.columns = df.columns.str.strip()
|
| 66 |
+
if "Answer" in df.columns:
|
| 67 |
+
df.rename(columns={"Answer": "Answers"}, inplace=True)
|
| 68 |
+
if "Question" not in df.columns and "Question " in df.columns:
|
| 69 |
+
df.rename(columns={"Question ": "Question"}, inplace=True)
|
| 70 |
+
if "Question" not in df.columns or "Answers" not in df.columns:
|
| 71 |
+
raise ValueError("CSV must have 'Question' and 'Answers' columns.")
|
| 72 |
+
docs = []
|
| 73 |
+
for _, row in df.iterrows():
|
| 74 |
+
q = str(row["Question"])
|
| 75 |
+
ans = str(row["Answers"])
|
| 76 |
+
doc = Document(page_content=ans, metadata={"question": q})
|
| 77 |
+
docs.append(doc)
|
| 78 |
+
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/multi-qa-mpnet-base-dot-v1")
|
| 79 |
+
vectorstore = FAISS.from_documents(docs, embedding=embeddings)
|
| 80 |
+
vectorstore.save_local(store_dir)
|
| 81 |
+
return vectorstore
|
| 82 |
|
| 83 |
# 4) Build RAG chain for Gemini (no changes)
|
| 84 |
+
def build_rag_chain(llm_model: LiteLLMModel, vectorstore: FAISS) -> RetrievalQA:
|
| 85 |
+
class GeminiLangChainLLM(LLM):
|
| 86 |
+
def _call(self, prompt: str, stop: Optional[list] = None, **kwargs) -> str:
|
| 87 |
+
messages = [{"role": "user", "content": prompt}]
|
| 88 |
+
return llm_model(messages, stop_sequences=stop)
|
| 89 |
+
@property
|
| 90 |
+
def _llm_type(self) -> str:
|
| 91 |
+
return "custom_gemini"
|
| 92 |
+
retriever = vectorstore.as_retriever(search_type="similarity", search_kwargs={"k": 3})
|
| 93 |
+
gemini_as_llm = GeminiLangChainLLM()
|
| 94 |
+
rag_chain = RetrievalQA.from_chain_type(
|
| 95 |
+
llm=gemini_as_llm,
|
| 96 |
+
chain_type="stuff",
|
| 97 |
+
retriever=retriever,
|
| 98 |
+
return_source_documents=True
|
| 99 |
+
)
|
| 100 |
+
return rag_chain
|
| 101 |
|
| 102 |
# 5) Initialize all the separate chains
|
| 103 |
classification_chain = get_classification_chain()
|
|
|
|
| 119 |
brand_rag_chain = build_rag_chain(gemini_llm, brand_vectorstore)
|
| 120 |
|
| 121 |
# 7) Tools / Agents for web search (no changes)
|
| 122 |
+
search_tool = DuckDuckGoSearchTool()
|
| 123 |
+
web_agent = CodeAgent(tools=[search_tool], model=gemini_llm)
|
| 124 |
+
managed_web_agent = ManagedAgent(agent=web_agent, name="web_search", description="Runs web search for you.")
|
| 125 |
+
manager_agent = CodeAgent(tools=[], model=gemini_llm, managed_agents=[managed_web_agent])
|
| 126 |
+
|
| 127 |
+
def do_web_search(query: str) -> str:
|
| 128 |
+
print("DEBUG: Attempting web search for more info...")
|
| 129 |
+
search_query = f"Give me relevant info: {query}"
|
| 130 |
+
response = manager_agent.run(search_query)
|
| 131 |
+
return response
|
| 132 |
|
| 133 |
# 8) Orchestrator: run_with_chain
|
| 134 |
def run_with_chain(query: str) -> str:
|