Create app.py
Browse filesremoved gemini wrapper and used gemini directly from LiteLLM
app.py
ADDED
@@ -0,0 +1,413 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# app.py
|
2 |
+
|
3 |
+
import os
|
4 |
+
import pandas as pd
|
5 |
+
import chardet
|
6 |
+
import logging
|
7 |
+
import gradio as gr
|
8 |
+
import json
|
9 |
+
import hashlib
|
10 |
+
import numpy as np
|
11 |
+
from typing import Optional, List, Tuple, ClassVar, Dict
|
12 |
+
|
13 |
+
from sentence_transformers import SentenceTransformer, util, CrossEncoder
|
14 |
+
from langchain.llms.base import LLM
|
15 |
+
import google.generativeai as genai
|
16 |
+
|
17 |
+
# Import smolagents components
|
18 |
+
from smolagents import CodeAgent, LiteLLMModel, DuckDuckGoSearchTool, ManagedAgent
|
19 |
+
|
20 |
+
###############################################################################
|
21 |
+
# 1) Logging Setup
|
22 |
+
###############################################################################
|
23 |
+
logging.basicConfig(level=logging.INFO)
|
24 |
+
logger = logging.getLogger("Daily Wellness AI")
|
25 |
+
|
26 |
+
###############################################################################
|
27 |
+
# 2) API Key Handling and LiteLLMModel Instantiation
|
28 |
+
###############################################################################
|
29 |
+
def clean_api_key(key: str) -> str:
|
30 |
+
"""Remove non-ASCII characters and strip whitespace from the API key."""
|
31 |
+
return ''.join(c for c in key if ord(c) < 128).strip()
|
32 |
+
|
33 |
+
gemini_api_key = os.environ.get("GEMINI_API_KEY")
|
34 |
+
if not gemini_api_key:
|
35 |
+
logger.error("GEMINI_API_KEY environment variable not set.")
|
36 |
+
raise EnvironmentError("Please set the GEMINI_API_KEY environment variable.")
|
37 |
+
|
38 |
+
gemini_api_key = clean_api_key(gemini_api_key)
|
39 |
+
logger.info("GEMINI API Key loaded successfully.")
|
40 |
+
|
41 |
+
# Instantiate the model using LiteLLMModel
|
42 |
+
llm = LiteLLMModel(model_id="gemini/gemini-pro", api_key=gemini_api_key)
|
43 |
+
|
44 |
+
###############################################################################
|
45 |
+
# 3) CSV Loading and Processing
|
46 |
+
###############################################################################
|
47 |
+
def load_csv(file_path: str):
|
48 |
+
try:
|
49 |
+
if not os.path.isfile(file_path):
|
50 |
+
logger.error(f"CSV file does not exist: {file_path}")
|
51 |
+
return [], []
|
52 |
+
|
53 |
+
with open(file_path, 'rb') as f:
|
54 |
+
result = chardet.detect(f.read())
|
55 |
+
encoding = result['encoding']
|
56 |
+
|
57 |
+
data = pd.read_csv(file_path, encoding=encoding)
|
58 |
+
if 'Question' not in data.columns or 'Answers' not in data.columns:
|
59 |
+
raise ValueError("CSV must contain 'Question' and 'Answers' columns.")
|
60 |
+
data = data.dropna(subset=['Question', 'Answers'])
|
61 |
+
|
62 |
+
logger.info(f"Loaded {len(data)} entries from {file_path}")
|
63 |
+
return data['Question'].tolist(), data['Answers'].tolist()
|
64 |
+
except Exception as e:
|
65 |
+
logger.error(f"Error loading CSV: {e}")
|
66 |
+
return [], []
|
67 |
+
|
68 |
+
csv_file_path = "AIChatbot.csv"
|
69 |
+
corpus_questions, corpus_answers = load_csv(csv_file_path)
|
70 |
+
if not corpus_questions:
|
71 |
+
raise ValueError("Failed to load the knowledge base.")
|
72 |
+
|
73 |
+
###############################################################################
|
74 |
+
# 4) Sentence Embeddings & Cross-Encoder
|
75 |
+
###############################################################################
|
76 |
+
embedding_model_name = "sentence-transformers/multi-qa-mpnet-base-dot-v1"
|
77 |
+
try:
|
78 |
+
embedding_model = SentenceTransformer(embedding_model_name)
|
79 |
+
logger.info(f"Loaded embedding model: {embedding_model_name}")
|
80 |
+
except Exception as e:
|
81 |
+
logger.error(f"Failed to load embedding model: {e}")
|
82 |
+
raise e
|
83 |
+
|
84 |
+
try:
|
85 |
+
question_embeddings = embedding_model.encode(corpus_questions, convert_to_tensor=True)
|
86 |
+
logger.info("Encoded question embeddings successfully.")
|
87 |
+
except Exception as e:
|
88 |
+
logger.error(f"Failed to encode question embeddings: {e}")
|
89 |
+
raise e
|
90 |
+
|
91 |
+
cross_encoder_name = "cross-encoder/ms-marco-MiniLM-L-6-v2"
|
92 |
+
try:
|
93 |
+
cross_encoder = CrossEncoder(cross_encoder_name)
|
94 |
+
logger.info(f"Loaded cross-encoder model: {cross_encoder_name}")
|
95 |
+
except Exception as e:
|
96 |
+
logger.error(f"Failed to load cross-encoder model: {e}")
|
97 |
+
raise e
|
98 |
+
|
99 |
+
###############################################################################
|
100 |
+
# 5) Retrieval + Re-Ranking
|
101 |
+
###############################################################################
|
102 |
+
class EmbeddingRetriever:
|
103 |
+
def __init__(self, questions, answers, embeddings, model, cross_encoder):
|
104 |
+
self.questions = questions
|
105 |
+
self.answers = answers
|
106 |
+
self.embeddings = embeddings
|
107 |
+
self.model = model
|
108 |
+
self.cross_encoder = cross_encoder
|
109 |
+
|
110 |
+
def retrieve(self, query: str, top_k: int = 3):
|
111 |
+
try:
|
112 |
+
query_embedding = self.model.encode(query, convert_to_tensor=True)
|
113 |
+
scores = util.pytorch_cos_sim(query_embedding, self.embeddings)[0].cpu().tolist()
|
114 |
+
scored_data = sorted(zip(self.questions, self.answers, scores), key=lambda x: x[2], reverse=True)[:top_k]
|
115 |
+
|
116 |
+
cross_inputs = [[query, candidate[0]] for candidate in scored_data]
|
117 |
+
cross_scores = self.cross_encoder.predict(cross_inputs)
|
118 |
+
|
119 |
+
reranked = sorted(zip(scored_data, cross_scores), key=lambda x: x[1], reverse=True)
|
120 |
+
final_retrieved = [(entry[0][1], entry[1]) for entry in reranked]
|
121 |
+
logger.debug(f"Retrieved and reranked answers: {final_retrieved}")
|
122 |
+
return final_retrieved
|
123 |
+
except Exception as e:
|
124 |
+
logger.error(f"Error during retrieval: {e}")
|
125 |
+
logger.debug("Exception details:", exc_info=True)
|
126 |
+
return []
|
127 |
+
|
128 |
+
retriever = EmbeddingRetriever(corpus_questions, corpus_answers, question_embeddings, embedding_model, cross_encoder)
|
129 |
+
|
130 |
+
###############################################################################
|
131 |
+
# 6) Sanity Check Tool
|
132 |
+
###############################################################################
|
133 |
+
class QuestionSanityChecker:
|
134 |
+
def __init__(self, llm):
|
135 |
+
self.llm = llm
|
136 |
+
|
137 |
+
def is_relevant(self, question: str) -> bool:
|
138 |
+
prompt = (
|
139 |
+
f"You are an assistant that determines whether a question is relevant to daily wellness.\n\n"
|
140 |
+
f"Question: {question}\n\n"
|
141 |
+
f"Is the above question relevant to daily wellness? Respond with 'Yes' or 'No' only."
|
142 |
+
)
|
143 |
+
try:
|
144 |
+
response = self.llm(prompt)
|
145 |
+
is_yes = 'yes' in response.lower()
|
146 |
+
is_no = 'no' in response.lower()
|
147 |
+
logger.debug(f"Sanity check response: '{response}', interpreted as is_yes={is_yes}, is_no={is_no}")
|
148 |
+
if is_yes and not is_no:
|
149 |
+
return True
|
150 |
+
elif is_no and not is_yes:
|
151 |
+
return False
|
152 |
+
else:
|
153 |
+
logger.warning(f"Sanity check ambiguous response: '{response}'. Defaulting to 'No'.")
|
154 |
+
return False
|
155 |
+
except Exception as e:
|
156 |
+
logger.error(f"Error in sanity check: {e}")
|
157 |
+
logger.debug("Exception details:", exc_info=True)
|
158 |
+
return False
|
159 |
+
|
160 |
+
sanity_checker = QuestionSanityChecker(llm)
|
161 |
+
|
162 |
+
###############################################################################
|
163 |
+
# 7) smolagents Integration: GROQ Model and Web Search
|
164 |
+
###############################################################################
|
165 |
+
# Initialize the smolagents' LiteLLMModel with GROQ model (already instantiated as llm if needed elsewhere)
|
166 |
+
|
167 |
+
# Instantiate the DuckDuckGo search tool
|
168 |
+
search_tool = DuckDuckGoSearchTool()
|
169 |
+
|
170 |
+
# Create the web agent with the search tool
|
171 |
+
web_agent = CodeAgent(
|
172 |
+
tools=[search_tool],
|
173 |
+
model=llm # Use the direct model for web queries if applicable
|
174 |
+
)
|
175 |
+
|
176 |
+
# Define the managed web agent
|
177 |
+
managed_web_agent = ManagedAgent(
|
178 |
+
agent=web_agent,
|
179 |
+
name="web_search",
|
180 |
+
description="Runs a web search for you. Provide your query as an argument."
|
181 |
+
)
|
182 |
+
|
183 |
+
# Create the manager agent with managed web agent and additional tools if needed
|
184 |
+
manager_agent = CodeAgent(
|
185 |
+
tools=[], # Add additional tools here if required
|
186 |
+
model=llm,
|
187 |
+
managed_agents=[managed_web_agent]
|
188 |
+
)
|
189 |
+
|
190 |
+
###############################################################################
|
191 |
+
# 8) Answer Expansion
|
192 |
+
###############################################################################
|
193 |
+
class AnswerExpander:
|
194 |
+
def __init__(self, llm):
|
195 |
+
self.llm = llm
|
196 |
+
|
197 |
+
def expand(self, query: str, retrieved_answers: List[str], detail: bool = False) -> str:
|
198 |
+
try:
|
199 |
+
reference_block = "\n".join(
|
200 |
+
f"- {idx+1}) {ans}" for idx, ans in enumerate(retrieved_answers, start=1)
|
201 |
+
)
|
202 |
+
|
203 |
+
detail_instructions = (
|
204 |
+
"Provide a thorough, in-depth explanation, adding relevant tips and context, "
|
205 |
+
"while remaining creative and brand-aligned. "
|
206 |
+
if detail else
|
207 |
+
"Provide a concise response in no more than 4 sentences."
|
208 |
+
)
|
209 |
+
|
210 |
+
prompt = (
|
211 |
+
f"You are Daily Wellness AI, a friendly wellness expert. Below are multiple "
|
212 |
+
f"potential answers retrieved from a local knowledge base. You have a user question.\n\n"
|
213 |
+
f"Question: {query}\n\n"
|
214 |
+
f"Retrieved Answers:\n{reference_block}\n\n"
|
215 |
+
f"Please synthesize these references into a single cohesive, creative, and brand-aligned response. "
|
216 |
+
f"{detail_instructions} "
|
217 |
+
f"End with a short inspirational note.\n\n"
|
218 |
+
"Disclaimer: This is general wellness information, not a substitute for professional medical advice."
|
219 |
+
)
|
220 |
+
|
221 |
+
logger.debug(f"Generated prompt for answer expansion: {prompt}")
|
222 |
+
response = self.llm(prompt)
|
223 |
+
logger.debug(f"Expanded answer: {response}")
|
224 |
+
return response.strip()
|
225 |
+
except Exception as e:
|
226 |
+
logger.error(f"Error expanding answer: {e}")
|
227 |
+
logger.debug("Exception details:", exc_info=True)
|
228 |
+
return "Sorry, an error occurred while generating a response."
|
229 |
+
|
230 |
+
answer_expander = AnswerExpander(llm)
|
231 |
+
|
232 |
+
###############################################################################
|
233 |
+
# 9) Persistent Cache (ADDED)
|
234 |
+
###############################################################################
|
235 |
+
CACHE_FILE = "query_cache.json"
|
236 |
+
SIMILARITY_THRESHOLD_CACHE = 0.8
|
237 |
+
|
238 |
+
def load_cache() -> Dict:
|
239 |
+
if os.path.isfile(CACHE_FILE):
|
240 |
+
try:
|
241 |
+
with open(CACHE_FILE, "r", encoding="utf-8") as f:
|
242 |
+
return json.load(f)
|
243 |
+
except Exception as e:
|
244 |
+
logger.error(f"Failed to load cache file: {e}")
|
245 |
+
return {}
|
246 |
+
return {}
|
247 |
+
|
248 |
+
def save_cache(cache_data: Dict):
|
249 |
+
try:
|
250 |
+
with open(CACHE_FILE, "w", encoding="utf-8") as f:
|
251 |
+
json.dump(cache_data, f, ensure_ascii=False, indent=2)
|
252 |
+
except Exception as e:
|
253 |
+
logger.error(f"Failed to save cache file: {e}")
|
254 |
+
|
255 |
+
def compute_hash(text: str) -> str:
|
256 |
+
return hashlib.md5(text.encode("utf-8")).hexdigest()
|
257 |
+
|
258 |
+
cache_store = load_cache()
|
259 |
+
|
260 |
+
###############################################################################
|
261 |
+
# 9.1) Utility to attempt cached retrieval (ADDED)
|
262 |
+
###############################################################################
|
263 |
+
def get_cached_answer(query: str) -> Optional[str]:
|
264 |
+
if not cache_store:
|
265 |
+
return None
|
266 |
+
|
267 |
+
query_embedding = embedding_model.encode(query, convert_to_tensor=True)
|
268 |
+
|
269 |
+
best_score = 0.0
|
270 |
+
best_answer = None
|
271 |
+
|
272 |
+
for cached_q, cache_data in cache_store.items():
|
273 |
+
stored_embedding = np.array(cache_data["embedding"], dtype=np.float32)
|
274 |
+
score = util.pytorch_cos_sim(query_embedding, stored_embedding)[0].item()
|
275 |
+
if score > best_score:
|
276 |
+
best_score = score
|
277 |
+
best_answer = cache_data["answer"]
|
278 |
+
|
279 |
+
if best_score >= SIMILARITY_THRESHOLD_CACHE:
|
280 |
+
logger.info(f"Cache hit! Similarity: {best_score:.2f}, returning cached answer.")
|
281 |
+
return best_answer
|
282 |
+
return None
|
283 |
+
|
284 |
+
def store_in_cache(query: str, answer: str):
|
285 |
+
query_embedding = embedding_model.encode(query, convert_to_tensor=True).cpu().tolist()
|
286 |
+
cache_key = compute_hash(query)
|
287 |
+
cache_store[cache_key] = {
|
288 |
+
"query": query,
|
289 |
+
"answer": answer,
|
290 |
+
"embedding": query_embedding
|
291 |
+
}
|
292 |
+
save_cache(cache_store)
|
293 |
+
|
294 |
+
###############################################################################
|
295 |
+
# 10) Query Handling
|
296 |
+
###############################################################################
|
297 |
+
def handle_query(query: str, detail: bool = False) -> str:
|
298 |
+
if not query or not isinstance(query, str) or len(query.strip()) == 0:
|
299 |
+
return "Please provide a valid question."
|
300 |
+
|
301 |
+
try:
|
302 |
+
is_relevant = sanity_checker.is_relevant(query)
|
303 |
+
if not is_relevant:
|
304 |
+
return "Your question seems out of context or not related to daily wellness. Please ask a wellness-related question."
|
305 |
+
|
306 |
+
retrieved = retriever.retrieve(query)
|
307 |
+
cached_answer = get_cached_answer(query)
|
308 |
+
|
309 |
+
if not retrieved:
|
310 |
+
if cached_answer:
|
311 |
+
logger.info("No relevant entries found in knowledge base. Returning cached answer.")
|
312 |
+
return cached_answer
|
313 |
+
return "I'm sorry, I couldn't find an answer to your question."
|
314 |
+
|
315 |
+
top_score = retrieved[0][1]
|
316 |
+
similarity_threshold = 0.3
|
317 |
+
|
318 |
+
if top_score < similarity_threshold:
|
319 |
+
logger.info("Similarity score below threshold. Performing web search.")
|
320 |
+
web_search_response = manager_agent.run(query)
|
321 |
+
logger.debug(f"Web search response: {web_search_response}")
|
322 |
+
|
323 |
+
if cached_answer:
|
324 |
+
blend_prompt = (
|
325 |
+
f"Combine the following previous answer with the new web results to create a more creative and accurate response. "
|
326 |
+
f"Do not include any of the previous prompt or instructions in your response. "
|
327 |
+
f"Add positivity and conclude with a short inspirational note.\n\n"
|
328 |
+
f"Previous Answer:\n{cached_answer}\n\n"
|
329 |
+
f"Web Results:\n{web_search_response}"
|
330 |
+
)
|
331 |
+
final_answer = llm(blend_prompt).strip()
|
332 |
+
else:
|
333 |
+
final_answer = (
|
334 |
+
f"**Daily Wellness AI**\n\n"
|
335 |
+
f"{web_search_response}\n\n"
|
336 |
+
"Disclaimer: This information is retrieved from the web and is not a substitute for professional medical advice.\n\n"
|
337 |
+
"Wishing you a calm and wonderful day!"
|
338 |
+
)
|
339 |
+
|
340 |
+
store_in_cache(query, final_answer)
|
341 |
+
return final_answer
|
342 |
+
|
343 |
+
responses = [ans for ans, score in retrieved]
|
344 |
+
|
345 |
+
if cached_answer:
|
346 |
+
blend_prompt = (
|
347 |
+
f"Combine the previous answer with the newly retrieved answers to enhance creativity and accuracy. "
|
348 |
+
f"Do not include any of the previous prompt or instructions in your response. "
|
349 |
+
f"Add new insights, creativity, and conclude with a short inspirational note.\n\n"
|
350 |
+
f"Previous Answer:\n{cached_answer}\n\n"
|
351 |
+
f"New Retrieved Answers:\n" + "\n".join(f"- {r}" for r in responses)
|
352 |
+
)
|
353 |
+
final_answer = llm(blend_prompt).strip()
|
354 |
+
else:
|
355 |
+
final_answer = answer_expander.expand(query, responses, detail=detail)
|
356 |
+
|
357 |
+
store_in_cache(query, final_answer)
|
358 |
+
return final_answer
|
359 |
+
|
360 |
+
except Exception as e:
|
361 |
+
logger.error(f"Error handling query: {e}")
|
362 |
+
logger.debug("Exception details:", exc_info=True)
|
363 |
+
return "An error occurred while processing your request."
|
364 |
+
|
365 |
+
###############################################################################
|
366 |
+
# 11) Gradio Interface
|
367 |
+
###############################################################################
|
368 |
+
def gradio_interface(query: str, detail: bool):
|
369 |
+
try:
|
370 |
+
response = handle_query(query, detail=detail)
|
371 |
+
formatted_response = response
|
372 |
+
return formatted_response
|
373 |
+
except Exception as e:
|
374 |
+
logger.error(f"Error in Gradio interface: {e}")
|
375 |
+
logger.debug("Exception details:", exc_info=True)
|
376 |
+
return "**An error occurred while processing your request. Please try again later.**"
|
377 |
+
|
378 |
+
interface = gr.Interface(
|
379 |
+
fn=gradio_interface,
|
380 |
+
inputs=[
|
381 |
+
gr.Textbox(
|
382 |
+
lines=2,
|
383 |
+
placeholder="e.g., What is box breathing?",
|
384 |
+
label="Ask Daily Wellness AI"
|
385 |
+
),
|
386 |
+
gr.Checkbox(
|
387 |
+
label="In-Depth Answer?",
|
388 |
+
value=False,
|
389 |
+
info="Check for a longer, more detailed response."
|
390 |
+
)
|
391 |
+
],
|
392 |
+
outputs=gr.Markdown(label="Answer from Daily Wellness AI"),
|
393 |
+
title="Daily Wellness AI",
|
394 |
+
description="Ask wellness-related questions and receive synthesized, creative answers. Optionally request a more in-depth response.",
|
395 |
+
theme="default",
|
396 |
+
examples=[
|
397 |
+
["What is box breathing and how does it help reduce anxiety?", True],
|
398 |
+
["Provide a daily wellness schedule incorporating box breathing techniques.", False],
|
399 |
+
["What are some tips for maintaining good posture while working at a desk?", True],
|
400 |
+
["Who is the CEO of Hugging Face?", False]
|
401 |
+
],
|
402 |
+
allow_flagging="never"
|
403 |
+
)
|
404 |
+
|
405 |
+
###############################################################################
|
406 |
+
# 12) Launch Gradio
|
407 |
+
###############################################################################
|
408 |
+
if __name__ == "__main__":
|
409 |
+
try:
|
410 |
+
interface.launch(server_name="0.0.0.0", server_port=7860, debug=False, share=True)
|
411 |
+
except Exception as e:
|
412 |
+
logger.error(f"Failed to launch Gradio interface: {e}")
|
413 |
+
logger.debug("Exception details:", exc_info=True)
|