Update app.py
Browse filesHelper Function (call_llm): Introduced to handle responses from LiteLLMModel.complete(), ensuring that text is extracted correctly.
Sanity Checker & Answer Expander: Updated to use call_llm instead of direct model calls to avoid type errors.
Other Calls to LLM: Replaced direct calls like llm(prompt) within handle_query and other blending scenarios with call_llm(prompt).
General Adjustments: Ensured consistency in handling model responses throughout the code.
app.py
CHANGED
@@ -41,6 +41,18 @@ logger.info("GEMINI API Key loaded successfully.")
|
|
41 |
# Instantiate the model using LiteLLMModel
|
42 |
llm = LiteLLMModel(model_id="gemini/gemini-pro", api_key=gemini_api_key)
|
43 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
###############################################################################
|
45 |
# 3) CSV Loading and Processing
|
46 |
###############################################################################
|
@@ -141,7 +153,7 @@ class QuestionSanityChecker:
|
|
141 |
f"Is the above question relevant to daily wellness? Respond with 'Yes' or 'No' only."
|
142 |
)
|
143 |
try:
|
144 |
-
response =
|
145 |
is_yes = 'yes' in response.lower()
|
146 |
is_no = 'no' in response.lower()
|
147 |
logger.debug(f"Sanity check response: '{response}', interpreted as is_yes={is_yes}, is_no={is_no}")
|
@@ -162,25 +174,21 @@ sanity_checker = QuestionSanityChecker(llm)
|
|
162 |
###############################################################################
|
163 |
# 7) smolagents Integration: GROQ Model and Web Search
|
164 |
###############################################################################
|
165 |
-
# Initialize the smolagents' LiteLLMModel with GROQ model (already instantiated as llm if needed elsewhere)
|
166 |
-
|
167 |
# Instantiate the DuckDuckGo search tool
|
168 |
search_tool = DuckDuckGoSearchTool()
|
169 |
|
170 |
# Create the web agent with the search tool
|
171 |
web_agent = CodeAgent(
|
172 |
tools=[search_tool],
|
173 |
-
model=llm
|
174 |
)
|
175 |
|
176 |
-
# Define the managed web agent
|
177 |
managed_web_agent = ManagedAgent(
|
178 |
agent=web_agent,
|
179 |
name="web_search",
|
180 |
description="Runs a web search for you. Provide your query as an argument."
|
181 |
)
|
182 |
|
183 |
-
# Create the manager agent with managed web agent and additional tools if needed
|
184 |
manager_agent = CodeAgent(
|
185 |
tools=[], # Add additional tools here if required
|
186 |
model=llm,
|
@@ -219,7 +227,7 @@ class AnswerExpander:
|
|
219 |
)
|
220 |
|
221 |
logger.debug(f"Generated prompt for answer expansion: {prompt}")
|
222 |
-
response =
|
223 |
logger.debug(f"Expanded answer: {response}")
|
224 |
return response.strip()
|
225 |
except Exception as e:
|
@@ -328,7 +336,7 @@ def handle_query(query: str, detail: bool = False) -> str:
|
|
328 |
f"Previous Answer:\n{cached_answer}\n\n"
|
329 |
f"Web Results:\n{web_search_response}"
|
330 |
)
|
331 |
-
final_answer =
|
332 |
else:
|
333 |
final_answer = (
|
334 |
f"**Daily Wellness AI**\n\n"
|
@@ -350,7 +358,7 @@ def handle_query(query: str, detail: bool = False) -> str:
|
|
350 |
f"Previous Answer:\n{cached_answer}\n\n"
|
351 |
f"New Retrieved Answers:\n" + "\n".join(f"- {r}" for r in responses)
|
352 |
)
|
353 |
-
final_answer =
|
354 |
else:
|
355 |
final_answer = answer_expander.expand(query, responses, detail=detail)
|
356 |
|
|
|
41 |
# Instantiate the model using LiteLLMModel
|
42 |
llm = LiteLLMModel(model_id="gemini/gemini-pro", api_key=gemini_api_key)
|
43 |
|
44 |
+
###############################################################################
|
45 |
+
# Helper Function for LLM Calls
|
46 |
+
###############################################################################
|
47 |
+
def call_llm(prompt: str) -> str:
|
48 |
+
"""
|
49 |
+
Helper to call the LLM with a prompt, handling response extraction.
|
50 |
+
"""
|
51 |
+
result = llm.complete(prompt)
|
52 |
+
if isinstance(result, dict):
|
53 |
+
return result.get('text', '')
|
54 |
+
return result
|
55 |
+
|
56 |
###############################################################################
|
57 |
# 3) CSV Loading and Processing
|
58 |
###############################################################################
|
|
|
153 |
f"Is the above question relevant to daily wellness? Respond with 'Yes' or 'No' only."
|
154 |
)
|
155 |
try:
|
156 |
+
response = call_llm(prompt)
|
157 |
is_yes = 'yes' in response.lower()
|
158 |
is_no = 'no' in response.lower()
|
159 |
logger.debug(f"Sanity check response: '{response}', interpreted as is_yes={is_yes}, is_no={is_no}")
|
|
|
174 |
###############################################################################
|
175 |
# 7) smolagents Integration: GROQ Model and Web Search
|
176 |
###############################################################################
|
|
|
|
|
177 |
# Instantiate the DuckDuckGo search tool
|
178 |
search_tool = DuckDuckGoSearchTool()
|
179 |
|
180 |
# Create the web agent with the search tool
|
181 |
web_agent = CodeAgent(
|
182 |
tools=[search_tool],
|
183 |
+
model=llm
|
184 |
)
|
185 |
|
|
|
186 |
managed_web_agent = ManagedAgent(
|
187 |
agent=web_agent,
|
188 |
name="web_search",
|
189 |
description="Runs a web search for you. Provide your query as an argument."
|
190 |
)
|
191 |
|
|
|
192 |
manager_agent = CodeAgent(
|
193 |
tools=[], # Add additional tools here if required
|
194 |
model=llm,
|
|
|
227 |
)
|
228 |
|
229 |
logger.debug(f"Generated prompt for answer expansion: {prompt}")
|
230 |
+
response = call_llm(prompt)
|
231 |
logger.debug(f"Expanded answer: {response}")
|
232 |
return response.strip()
|
233 |
except Exception as e:
|
|
|
336 |
f"Previous Answer:\n{cached_answer}\n\n"
|
337 |
f"Web Results:\n{web_search_response}"
|
338 |
)
|
339 |
+
final_answer = call_llm(blend_prompt).strip()
|
340 |
else:
|
341 |
final_answer = (
|
342 |
f"**Daily Wellness AI**\n\n"
|
|
|
358 |
f"Previous Answer:\n{cached_answer}\n\n"
|
359 |
f"New Retrieved Answers:\n" + "\n".join(f"- {r}" for r in responses)
|
360 |
)
|
361 |
+
final_answer = call_llm(blend_prompt).strip()
|
362 |
else:
|
363 |
final_answer = answer_expander.expand(query, responses, detail=detail)
|
364 |
|