File size: 2,486 Bytes
5b2b2db
7b899a2
9eaf8c4
 
b5e8391
 
6705f79
b752340
0dad17d
b752340
0dad17d
 
b5e8391
0dad17d
b752340
0dad17d
 
b752340
 
 
 
0dad17d
 
 
 
 
b752340
0dad17d
b752340
 
0dad17d
b752340
 
 
 
 
9eaf8c4
0dad17d
 
b752340
0dad17d
 
 
b752340
 
0dad17d
b752340
 
0dad17d
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
# my_memory_logic.py

import os

# Import the PipelineRunnable from pipeline.py
from pipeline import pipeline_runnable

from langchain.schema import BaseChatMessageHistory
from langchain_community.chat_message_histories import ChatMessageHistory
from langchain.runnables.history import RunnableWithMessageHistory

###############################################################################
# 1) In-memory store: session_id -> ChatMessageHistory
###############################################################################
store = {}  # e.g., { "abc123": ChatMessageHistory(...) }

def get_session_history(session_id: str) -> BaseChatMessageHistory:
    """
    Retrieve or create a ChatMessageHistory object for the given session_id.
    This ensures each session_id has its own conversation history.
    """
    if session_id not in store:
        store[session_id] = ChatMessageHistory()
    return store[session_id]

###############################################################################
# 2) Create the RunnableWithMessageHistory (session-based chain)
###############################################################################
# This wraps your `pipeline_runnable` so it automatically reads/writes
# conversation history from get_session_history for each session.
conversational_rag_chain = RunnableWithMessageHistory(
    pipeline_runnable,               # the Runnable from pipeline.py
    get_session_history,             # fetches or creates ChatMessageHistory by session_id
    input_messages_key="input",      # key in the dict for user's new query
    history_messages_key="chat_history",  # key for existing chat logs
    output_messages_key="answer"      # key for final output
)

###############################################################################
# 3) A convenience function to run a query with session-based memory
###############################################################################
def run_with_session_memory(user_query: str, session_id: str) -> str:
    """
    A helper that calls our `conversational_rag_chain` 
    with a given session_id. Returns the final 'answer'.
    """
    # We invoke the chain with the user query; 
    # the chain automatically updates the session’s chat history.
    response = conversational_rag_chain.invoke(
        {"input": user_query},
        config={
            "configurable": {
                "session_id": session_id
            }
        }
    )
    return response["answer"]