File size: 7,950 Bytes
b0c64f6
 
 
 
a79a41b
b0c64f6
 
 
 
 
 
 
 
 
a79a41b
b0c64f6
 
 
99474e2
b0c64f6
99474e2
b0c64f6
 
a79a41b
b0c64f6
 
 
 
 
 
 
a79a41b
b0c64f6
 
 
 
 
 
 
 
 
 
 
 
99474e2
b0c64f6
 
 
 
99474e2
b0c64f6
 
99474e2
b0c64f6
 
 
 
 
 
99474e2
b0c64f6
 
 
 
 
 
 
 
 
 
 
 
 
99474e2
b0c64f6
 
 
99474e2
b0c64f6
 
 
 
 
 
 
 
 
 
 
a79a41b
b0c64f6
 
 
 
 
 
 
a79a41b
b0c64f6
 
 
 
 
 
99474e2
 
b0c64f6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
99474e2
b0c64f6
a79a41b
99474e2
a79a41b
 
 
99474e2
 
a79a41b
 
 
 
 
 
 
 
b0c64f6
 
 
99474e2
b0c64f6
 
 
a79a41b
b0c64f6
a79a41b
b0c64f6
a79a41b
 
b0c64f6
 
a79a41b
b0c64f6
 
 
a79a41b
b0c64f6
 
 
a79a41b
 
b0c64f6
a79a41b
b0c64f6
a79a41b
b0c64f6
 
a79a41b
 
b0c64f6
a79a41b
b0c64f6
a79a41b
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
# pipeline.py
import os
import getpass
import pandas as pd
from typing import Optional, Dict, Any

from langchain.docstore.document import Document
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.vectorstores import FAISS
from langchain.chains import RetrievalQA

from smolagents import CodeAgent, DuckDuckGoSearchTool, ManagedAgent, LiteLLMModel
import litellm

# For classification/refusal/tailor/cleaner logic
from classification_chain import get_classification_chain
from refusal_chain import get_refusal_chain
from tailor_chain import get_tailor_chain
from cleaner_chain import get_cleaner_chain

from langchain.llms.base import LLM

###############################################################################
# 1) Environment Setup
###############################################################################
if not os.environ.get("GEMINI_API_KEY"):
    os.environ["GEMINI_API_KEY"] = getpass.getpass("Enter your Gemini API Key: ")
if not os.environ.get("GROQ_API_KEY"):
    os.environ["GROQ_API_KEY"] = getpass.getpass("Enter your GROQ API Key: ")

###############################################################################
# 2) VectorStore Building/Loading
###############################################################################
def build_or_load_vectorstore(csv_path: str, store_dir: str) -> FAISS:
    if os.path.exists(store_dir):
        print(f"DEBUG: Found existing FAISS store at '{store_dir}'. Loading...")
        embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/multi-qa-mpnet-base-dot-v1")
        vectorstore = FAISS.load_local(store_dir, embeddings)
        return vectorstore
    else:
        print(f"DEBUG: Building new store from CSV: {csv_path}")
        df = pd.read_csv(csv_path)
        df = df.loc[:, ~df.columns.str.contains('^Unnamed')]
        df.columns = df.columns.str.strip()

        if "Answer" in df.columns:
            df.rename(columns={"Answer": "Answers"}, inplace=True)
        if "Question" not in df.columns and "Question " in df.columns:
            df.rename(columns={"Question ": "Question"}, inplace=True)

        if "Question" not in df.columns or "Answers" not in df.columns:
            raise ValueError("CSV must have 'Question' and 'Answers' columns.")

        docs = []
        for _, row in df.iterrows():
            q = str(row["Question"])
            ans = str(row["Answers"])
            doc = Document(page_content=ans, metadata={"question": q})
            docs.append(doc)

        embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/multi-qa-mpnet-base-dot-v1")
        vectorstore = FAISS.from_documents(docs, embedding=embeddings)
        vectorstore.save_local(store_dir)
        return vectorstore

###############################################################################
# 3) Build RAG chain for Gemini
###############################################################################
def build_rag_chain(llm_model: LiteLLMModel, vectorstore: FAISS) -> RetrievalQA:
    class GeminiLangChainLLM(LLM):
        def _call(self, prompt: str, stop: Optional[list] = None, **kwargs) -> str:
            messages = [{"role": "user", "content": prompt}]
            return llm_model(messages, stop_sequences=stop)

        @property
        def _llm_type(self) -> str:
            return "custom_gemini"

    retriever = vectorstore.as_retriever(search_type="similarity", search_kwargs={"k": 3})
    gemini_as_llm = GeminiLangChainLLM()
    rag_chain = RetrievalQA.from_chain_type(
        llm=gemini_as_llm,
        chain_type="stuff",
        retriever=retriever,
        return_source_documents=True
    )
    return rag_chain

###############################################################################
# 4) Init Sub-Chains
###############################################################################
classification_chain = get_classification_chain()
refusal_chain = get_refusal_chain()
tailor_chain = get_tailor_chain()
cleaner_chain = get_cleaner_chain()

###############################################################################
# 5) Build VectorStores & RAG
###############################################################################
wellness_csv = "AIChatbot.csv"
brand_csv = "BrandAI.csv"
wellness_store_dir = "faiss_wellness_store"
brand_store_dir = "faiss_brand_store"

gemini_llm = LiteLLMModel(model_id="gemini/gemini-pro", api_key=os.environ.get("GEMINI_API_KEY"))

wellness_vectorstore = build_or_load_vectorstore(wellness_csv, wellness_store_dir)
brand_vectorstore = build_or_load_vectorstore(brand_csv, brand_store_dir)

wellness_rag_chain = build_rag_chain(gemini_llm, wellness_vectorstore)
brand_rag_chain = build_rag_chain(gemini_llm, brand_vectorstore)

search_tool = DuckDuckGoSearchTool()
web_agent = CodeAgent(tools=[search_tool], model=gemini_llm)
managed_web_agent = ManagedAgent(agent=web_agent, name="web_search", description="Runs web search for you.")
manager_agent = CodeAgent(tools=[], model=gemini_llm, managed_agents=[managed_web_agent])

def do_web_search(query: str) -> str:
    print("DEBUG: Attempting web search for more info...")
    search_query = f"Give me relevant info: {query}"
    response = manager_agent.run(search_query)
    return response

###############################################################################
# 6) Orchestrator: run_with_chain_context
###############################################################################
def run_with_chain_context(inputs: Dict[str, Any]) -> Dict[str, str]:
    """
    This function is called by the RunnableWithMessageHistory in my_memory_logic.py
    inputs: { "input": <user_query>, "chat_history": <list of messages> }
    Returns: { "answer": <final response> }
    """

    user_query = inputs["input"]  # The user's new question
    # You can optionally use inputs.get("chat_history") if needed
    chat_history = inputs.get("chat_history", [])

    print("DEBUG: Starting run_with_chain_context...")
    print(f"User query: {user_query}")
    # 1) Classification
    class_result = classification_chain.invoke({"query": user_query})
    classification = class_result.get("text", "").strip()
    print("DEBUG: Classification =>", classification)

    # 2) If OutOfScope => refusal => tailor => return
    if classification == "OutOfScope":
        refusal_text = refusal_chain.run({})
        final_refusal = tailor_chain.run({"response": refusal_text})
        return {"answer": final_refusal.strip()}

    # 3) If Wellness => wellness RAG => if insufficient => web => unify => tailor
    if classification == "Wellness":
        # pass chat_history if your chain can use it
        rag_result = wellness_rag_chain.invoke({"input": user_query, "chat_history": chat_history})
        csv_answer = rag_result["result"].strip()
        if not csv_answer:
            web_answer = do_web_search(user_query)
        else:
            lower_ans = csv_answer.lower()
            if any(phrase in lower_ans for phrase in ["i do not know", "not sure", "no context", "cannot answer"]):
                web_answer = do_web_search(user_query)
            else:
                web_answer = ""
        final_merged = cleaner_chain.merge(kb=csv_answer, web=web_answer)
        final_answer = tailor_chain.run({"response": final_merged}).strip()
        return {"answer": final_answer}

    # 4) If Brand => brand RAG => tailor => return
    if classification == "Brand":
        rag_result = brand_rag_chain.invoke({"input": user_query, "chat_history": chat_history})
        csv_answer = rag_result["result"].strip()
        final_merged = cleaner_chain.merge(kb=csv_answer, web="")
        final_answer = tailor_chain.run({"response": final_merged}).strip()
        return {"answer": final_answer}

    # 5) fallback => refusal
    refusal_text = refusal_chain.run({})
    final_refusal = tailor_chain.run({"response": refusal_text}).strip()
    return {"answer": final_refusal}