File size: 2,404 Bytes
f36f021
87cd864
a8d22a4
87cd864
e4ef93a
3e00622
 
 
e4ef93a
c450e62
 
 
 
 
 
 
 
 
 
 
 
3d23e89
 
c450e62
 
 
 
 
 
3d23e89
c450e62
 
 
 
 
 
3d23e89
c450e62
 
 
3d23e89
c450e62
8972636
 
8a646af
 
3d23e89
8a646af
 
3d23e89
8a646af
 
3d23e89
8a646af
 
 
8972636
8a646af
 
87cd864
2cc6ea2
87cd864
2cc6ea2
87cd864
8a646af
87cd864
 
c450e62
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
import gradio as gr
from my_memory_logic import run_with_session_memory

def chat_interface_fn(message, history, session_id):
    """
    Multi-turn chat function for Gradio's ChatInterface.
    'session_id' is used to store conversation across turns.
    Deduplicates consecutive repeated Q&A pairs to avoid repetition.
    """
    # Initialize history if None
    if history is None:
        history = []
    
    # Ensure we're working with the correct history format
    # Gradio 3.x sends history as a list of tuples (user, assistant)
    if isinstance(history, list):
        if len(history) > 0 and isinstance(history[0], tuple):
            history = [
                {"role": "user" if i % 2 == 0 else "assistant", "content": msg}
                for tup in history
                for i, msg in enumerate([tup[0], tup[1]])
            ]
    
    # Get answer from the session-based memory pipeline
    try:
        answer = run_with_session_memory(message, session_id)
    except Exception as e:
        print(f"Error in run_with_session_memory: {str(e)}")
        answer = "I apologize, but I encountered an error processing your request."
    
    # Format for Gradio ChatInterface
    # Gradio expects a tuple of (new_chat_history, internal_history)
    new_history = history + [
        {"role": "user", "content": message},
        {"role": "assistant", "content": answer}
    ]
    
    # Convert history to format expected by Gradio
    chat_history = [(msg["content"], hist["content"]) 
                    for msg, hist in zip(new_history[::2], new_history[1::2])]
    
    return chat_history, new_history

# Custom CSS for chat interface
my_chat_css = """
.gradio-container {
    margin: auto;
}
.user .wrap {
    text-align: right !important;
}
.assistant .wrap {
    text-align: left !important;
}
"""

# Set up Gradio interface
with gr.Blocks(css=my_chat_css) as demo:
    gr.Markdown("### DailyWellnessAI (User on right, Assistant on left)")
    session_id_box = gr.Textbox(label="Session ID", value="abc123", interactive=True)
    
    chat_interface = gr.ChatInterface(
        fn=lambda msg, hist: chat_interface_fn(msg, hist, session_id_box.value),
        title="DailyWellnessAI (Session-based Memory)",
        description="Ask your questions. The session_id determines your stored memory."
    )

# Launch the Gradio interface with sharing enabled
demo.launch(share=True)