# my_memory_logic.py | |
import os | |
# Import the "run_with_chain_context" function from pipeline.py | |
# This function must accept a dict with { "input": ..., "chat_history": ... } | |
# and return a dict with { "answer": ... }. | |
from pipeline import run_with_chain_context | |
# For session-based chat history | |
from langchain_core.chat_history import BaseChatMessageHistory | |
from langchain_community.chat_message_histories import ChatMessageHistory | |
from langchain_core.runnables.history import RunnableWithMessageHistory | |
############################################################################### | |
# 1) In-Memory Store: session_id -> ChatMessageHistory | |
############################################################################### | |
store = {} # e.g., { "abc123": ChatMessageHistory(...) } | |
def get_session_history(session_id: str) -> BaseChatMessageHistory: | |
""" | |
Retrieve (or create) a ChatMessageHistory for the given session_id. | |
This ensures each session_id has its own conversation transcripts. | |
""" | |
if session_id not in store: | |
store[session_id] = ChatMessageHistory() | |
return store[session_id] | |
############################################################################### | |
# 2) Build a RunnableWithMessageHistory that wraps "run_with_chain_context" | |
############################################################################### | |
# "run_with_chain_context" must be a function returning a dict, | |
# e.g. { "answer": "... final string ..." } | |
# input_messages_key -> "input" | |
# history_messages_key -> "chat_history" | |
# output_messages_key -> "answer" | |
conversational_rag_chain = RunnableWithMessageHistory( | |
run_with_chain_context, # from pipeline.py | |
get_session_history, | |
input_messages_key="input", | |
history_messages_key="chat_history", | |
output_messages_key="answer" | |
) | |
############################################################################### | |
# 3) A convenience function that calls our chain with session-based memory | |
############################################################################### | |
def run_with_session_memory(user_query: str, session_id: str) -> str: | |
""" | |
Calls the 'conversational_rag_chain' with a given session_id and user_query. | |
This returns the final 'answer' from run_with_chain_context. | |
""" | |
response = conversational_rag_chain.invoke( | |
{"input": user_query}, | |
config={ | |
"configurable": { | |
"session_id": session_id | |
} | |
} | |
) | |
return response["answer"] | |