# my_memory_logic.py | |
import os | |
# We'll import the session-based classes from langchain_core if you have them installed: | |
# If not, you'll need to install the correct package versions or adapt to your environment. | |
from langchain_core.chat_history import BaseChatMessageHistory | |
from langchain_community.chat_message_histories import ChatMessageHistory | |
from langchain_core.runnables.history import RunnableWithMessageHistory | |
# We'll assume you have a `rag_chain` from your pipeline code or can import it. | |
# For example: | |
# from pipeline import rag_chain | |
# For demonstration, let's just define a dummy "rag_chain" that returns "answer". | |
# In your real code, import your actual chain. | |
class DummyRagChain: | |
def invoke(self, inputs): | |
# returns a dictionary with "answer" | |
return {"answer": f"Dummy answer to '{inputs['input']}'."} | |
rag_chain = DummyRagChain() | |
############################################################################### | |
# 1) We'll keep an in-memory store of session_id -> ChatMessageHistory | |
############################################################################### | |
store = {} # { "abc123": ChatMessageHistory(...) } | |
def get_session_history(session_id: str) -> BaseChatMessageHistory: | |
""" | |
Retrieve or create a ChatMessageHistory object for the given session_id. | |
""" | |
if session_id not in store: | |
store[session_id] = ChatMessageHistory() | |
return store[session_id] | |
############################################################################### | |
# 2) Create the RunnableWithMessageHistory (conversational chain) | |
############################################################################### | |
# If your snippet references `rag_chain`, combine it with get_session_history. | |
conversational_rag_chain = RunnableWithMessageHistory( | |
rag_chain, # your main chain (RAG or pipeline) | |
get_session_history, # function to fetch chat history for a session | |
input_messages_key="input", | |
history_messages_key="chat_history", | |
output_messages_key="answer" | |
) | |
############################################################################### | |
# 3) A convenience function to run a query with session-based memory | |
############################################################################### | |
def run_with_session_memory(user_query: str, session_id: str) -> str: | |
""" | |
A convenience wrapper that calls our `conversational_rag_chain` | |
with a specific session_id. This returns the final 'answer'. | |
""" | |
response = conversational_rag_chain.invoke( | |
{"input": user_query}, | |
config={ | |
"configurable": { | |
"session_id": session_id | |
} | |
} | |
) | |
return response["answer"] | |