Phoenix21 commited on
Commit
f6aa366
·
verified ·
1 Parent(s): b0c64f6

UPDATE APP.PY ADDED CHAT_HISTORY FEATURE

Browse files
Files changed (1) hide show
  1. app.py +28 -27
app.py CHANGED
@@ -1,32 +1,33 @@
1
- # app.py
2
- import os
3
  import gradio as gr
4
  from pipeline import run_with_chain
 
5
 
6
- def ask_dailywellness(query: str) -> str:
7
- """
8
- Calls our main pipeline function from pipeline.py
9
- """
10
- return run_with_chain(query)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11
 
12
- # Build a simple Gradio interface
13
- interface = gr.Interface(
14
- fn=ask_dailywellness,
15
- inputs=gr.Textbox(
16
- lines=2,
17
- label="Ask DailyWellnessAI",
18
- placeholder="e.g., How do I improve my posture while working?"
19
- ),
20
- outputs=gr.Textbox(
21
- label="DailyWellnessAI Answer"
22
- ),
23
- title="DailyWellnessAI Chat",
24
- description=(
25
- "Ask a wellness question, or something about DailyWellnessAI (brand). "
26
- "If the question is out of scope, you'll get a polite refusal."
27
- ),
28
- allow_flagging="never"
29
  )
30
-
31
- if __name__ == "__main__":
32
- interface.launch(server_name="0.0.0.0", server_port=7860)
 
 
 
1
  import gradio as gr
2
  from pipeline import run_with_chain
3
+ from my_memory_logic import memory, restatement_chain
4
 
5
+ def chat_history_fn(user_input, history):
6
+ # Convert `history` (list of [user, ai] pairs) into memory messages
7
+ for user_msg, ai_msg in history:
8
+ memory.chat_memory.add_user_message(user_msg)
9
+ memory.chat_memory.add_ai_message(ai_msg)
10
+
11
+ # 1) Restate the user question with chat history
12
+ reformulated_q = restatement_chain.run({
13
+ "chat_history": memory.chat_memory.messages,
14
+ "input": user_input
15
+ })
16
+
17
+ # 2) Pass the reformulated question to your pipeline
18
+ answer = run_with_chain(reformulated_q)
19
+
20
+ # 3) Update memory
21
+ memory.chat_memory.add_user_message(user_input)
22
+ memory.chat_memory.add_ai_message(answer)
23
+
24
+ # 4) Return the new message + updated history for Gradio
25
+ history.append((user_input, answer))
26
+ return history, history
27
 
28
+ demo = gr.ChatInterface(
29
+ fn=chat_history_fn,
30
+ title="DailyWellnessAI with Memory",
31
+ description="A chat bot that remembers context using memory + question restatement."
 
 
 
 
 
 
 
 
 
 
 
 
 
32
  )
33
+ demo.launch()