import os import getpass import pandas as pd from typing import Optional, Dict, Any # Conditional import for Runnable from available locations try: from langchain_core.runnables.base import Runnable except ImportError: try: from langchain.runnables.base import Runnable except ImportError: raise ImportError("Cannot find Runnable class. Please upgrade LangChain or check your installation.") from langchain.docstore.document import Document from langchain.embeddings import HuggingFaceEmbeddings from langchain.vectorstores import FAISS from langchain.chains import RetrievalQA from smolagents import CodeAgent, DuckDuckGoSearchTool, ManagedAgent, LiteLLMModel import litellm from classification_chain import get_classification_chain from refusal_chain import get_refusal_chain from tailor_chain import get_tailor_chain from cleaner_chain import get_cleaner_chain from contextualize_chain import get_contextualize_chain # New Import for ContextualizeChain from langchain.llms.base import LLM ############################################################################### # 1) Environment keys ############################################################################### if not os.environ.get("GEMINI_API_KEY"): os.environ["GEMINI_API_KEY"] = getpass.getpass("Enter your Gemini API Key: ") if not os.environ.get("GROQ_API_KEY"): os.environ["GROQ_API_KEY"] = getpass.getpass("Enter your GROQ API Key: ") ############################################################################### # 2) Build or load VectorStore ############################################################################### def build_or_load_vectorstore(csv_path: str, store_dir: str) -> FAISS: if os.path.exists(store_dir): print(f"DEBUG: Found existing FAISS store at '{store_dir}'. Loading from disk.") embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/multi-qa-mpnet-base-dot-v1") vectorstore = FAISS.load_local(store_dir, embeddings) return vectorstore else: print(f"DEBUG: Building new store from CSV: {csv_path}") df = pd.read_csv(csv_path) df = df.loc[:, ~df.columns.str.contains('^Unnamed')] df.columns = df.columns.str.strip() if "Answer" in df.columns: df.rename(columns={"Answer": "Answers"}, inplace=True) if "Question" not in df.columns and "Question " in df.columns: df.rename(columns={"Question ": "Question"}, inplace=True) if "Question" not in df.columns or "Answers" not in df.columns: raise ValueError("CSV must have 'Question' and 'Answers' columns.") docs = [] for _, row in df.iterrows(): q = str(row["Question"]) ans = str(row["Answers"]) doc = Document(page_content=ans, metadata={"question": q}) docs.append(doc) embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/multi-qa-mpnet-base-dot-v1") vectorstore = FAISS.from_documents(docs, embedding=embeddings) vectorstore.save_local(store_dir) return vectorstore ############################################################################### # 3) Build RAG chain ############################################################################### def build_rag_chain(llm_model: LiteLLMModel, vectorstore: FAISS) -> RetrievalQA: class GeminiLangChainLLM(LLM): def _call(self, prompt: str, stop: Optional[list] = None, **kwargs) -> str: messages = [{"role": "user", "content": prompt}] return llm_model(messages, stop_sequences=stop) @property def _llm_type(self) -> str: return "custom_gemini" retriever = vectorstore.as_retriever(search_type="similarity", search_kwargs={"k": 3}) gemini_as_llm = GeminiLangChainLLM() rag_chain = RetrievalQA.from_chain_type( llm=gemini_as_llm, chain_type="stuff", retriever=retriever, return_source_documents=True ) return rag_chain ############################################################################### # 4) Initialize sub-chains ############################################################################### classification_chain = get_classification_chain() refusal_chain = get_refusal_chain() tailor_chain = get_tailor_chain() cleaner_chain = get_cleaner_chain() contextualize_chain = get_contextualize_chain() # New Chain for Contextualizing User Queries ############################################################################### # 5) Build vectorstores & RAG ############################################################################### gemini_llm = LiteLLMModel(model_id="gemini/gemini-pro", api_key=os.environ.get("GEMINI_API_KEY")) wellness_csv = "AIChatbot.csv" brand_csv = "BrandAI.csv" wellness_store_dir = "faiss_wellness_store" brand_store_dir = "faiss_brand_store" wellness_vectorstore = build_or_load_vectorstore(wellness_csv, wellness_store_dir) brand_vectorstore = build_or_load_vectorstore(brand_csv, brand_store_dir) wellness_rag_chain = build_rag_chain(gemini_llm, wellness_vectorstore) brand_rag_chain = build_rag_chain(gemini_llm, brand_vectorstore) search_tool = DuckDuckGoSearchTool() web_agent = CodeAgent(tools=[search_tool], model=gemini_llm) managed_web_agent = ManagedAgent(agent=web_agent, name="web_search", description="Runs web search for you.") manager_agent = CodeAgent(tools=[], model=gemini_llm, managed_agents=[managed_web_agent]) def do_web_search(query: str) -> str: print("DEBUG: Attempting web search for more info...") search_query = f"Give me relevant info: {query}" response = manager_agent.run(search_query) return response ############################################################################### # 6) Orchestrator function: returns a dict => {"answer": "..."} ############################################################################### def run_with_chain_context(inputs: Dict[str, Any]) -> Dict[str, str]: user_query = inputs["input"] chat_history = inputs.get("chat_history", []) contextualized_query = contextualize_chain.invoke({"user_query": user_query, "chat_history": chat_history}) # 2) Classification (using the contextualized query) class_result = classification_chain.invoke({"query": contextualized_query, "chat_history": chat_history}) classification = class_result.get("text", "").strip() if classification == "OutOfScope": refusal_text = refusal_chain.run({"chat_history": chat_history}) final_refusal = tailor_chain.run({"response": refusal_text, "chat_history": chat_history}) return {"answer": final_refusal.strip()} if classification == "Wellness": rag_result = wellness_rag_chain.invoke({ "query": contextualized_query, "chat_history": chat_history # Pass history here }) csv_answer = rag_result["result"].strip() web_answer = do_web_search(contextualized_query) if not csv_answer else "" final_merged = cleaner_chain.merge(kb=csv_answer, web=web_answer, chat_history=chat_history) final_answer = tailor_chain.run({"response": final_merged, "chat_history": chat_history}).strip() return {"answer": final_answer} if classification == "Brand": rag_result = brand_rag_chain.invoke({ "query": contextualized_query, "chat_history": chat_history # Pass history here }) csv_answer = rag_result["result"].strip() final_merged = cleaner_chain.merge(kb=csv_answer, web="", chat_history=chat_history) final_answer = tailor_chain.run({"response": final_merged, "chat_history": chat_history}).strip() return {"answer": final_answer} refusal_text = refusal_chain.run({"chat_history": chat_history}) final_refusal = tailor_chain.run({"response": refusal_text, "chat_history": chat_history}).strip() return {"answer": final_refusal} ############################################################################### # 7) Build a "Runnable" wrapper so .with_listeners() works ############################################################################### class PipelineRunnable(Runnable[Dict[str, Any], Dict[str, str]]): def invoke(self, input: Dict[str, Any], config: Optional[Any] = None) -> Dict[str, str]: return run_with_chain_context(input) pipeline_runnable = PipelineRunnable()