Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
import os
|
2 |
import logging
|
3 |
import re
|
4 |
-
from
|
5 |
from langchain_huggingface import HuggingFaceEmbeddings
|
6 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
7 |
from langchain_groq import ChatGroq
|
@@ -105,23 +105,19 @@ def create_rag_pipeline(file_paths, model, temperature, max_tokens):
|
|
105 |
embedding=embedding_model,
|
106 |
persist_directory="/tmp/chroma_db"
|
107 |
)
|
108 |
-
vectorstore.persist()
|
109 |
|
110 |
retriever = vectorstore.as_retriever()
|
111 |
|
112 |
-
# Updated Prompt Template with Formatting Instructions
|
113 |
custom_prompt_template = PromptTemplate(
|
114 |
input_variables=["context", "question"],
|
115 |
template="""
|
116 |
-
You are an AI assistant specialized in daily wellness. Provide a concise, thorough, and stand-alone answer to the user's question based on the given context.
|
117 |
-
|
118 |
-
**Context:**
|
119 |
{context}
|
120 |
-
|
121 |
-
**Question:**
|
122 |
{question}
|
123 |
-
|
124 |
-
**Final Answer:**
|
125 |
"""
|
126 |
)
|
127 |
|
@@ -146,7 +142,9 @@ def answer_question(model, temperature, max_tokens, question):
|
|
146 |
return "The system is currently unavailable. Please try again later."
|
147 |
try:
|
148 |
answer = rag_chain.run(question)
|
149 |
-
|
|
|
|
|
150 |
return complete_answer
|
151 |
except Exception as e_inner:
|
152 |
logger.error(f"Error: {e_inner}")
|
@@ -155,7 +153,6 @@ def answer_question(model, temperature, max_tokens, question):
|
|
155 |
def gradio_interface(model, temperature, max_tokens, question):
|
156 |
return answer_question(model, temperature, max_tokens, question)
|
157 |
|
158 |
-
# Updated Gradio Interface to Render Markdown
|
159 |
interface = gr.Interface(
|
160 |
fn=gradio_interface,
|
161 |
inputs=[
|
@@ -164,11 +161,11 @@ interface = gr.Interface(
|
|
164 |
gr.Slider(label="Max Tokens", minimum=200, maximum=2048, step=1, value=max_tokens),
|
165 |
gr.Textbox(label="Question", placeholder="e.g., What is box breathing and how does it help reduce anxiety?")
|
166 |
],
|
167 |
-
outputs=gr.
|
168 |
title="Daily Wellness AI",
|
169 |
-
description="Ask questions about daily wellness and receive a concise, complete
|
170 |
examples=[
|
171 |
-
["llama3-8b-8192", 0.7, 500, "What
|
172 |
["llama3-8b-8192", 0.6, 600, "Give me a weekly fitness schedule incorporating mindfulness exercises."]
|
173 |
],
|
174 |
allow_flagging="never"
|
|
|
1 |
import os
|
2 |
import logging
|
3 |
import re
|
4 |
+
from langchain_community.vectorstores import Chroma # Updated import
|
5 |
from langchain_huggingface import HuggingFaceEmbeddings
|
6 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
7 |
from langchain_groq import ChatGroq
|
|
|
105 |
embedding=embedding_model,
|
106 |
persist_directory="/tmp/chroma_db"
|
107 |
)
|
108 |
+
# vectorstore.persist() # Deprecated in Chroma 0.4.x
|
109 |
|
110 |
retriever = vectorstore.as_retriever()
|
111 |
|
|
|
112 |
custom_prompt_template = PromptTemplate(
|
113 |
input_variables=["context", "question"],
|
114 |
template="""
|
115 |
+
You are an AI assistant specialized in daily wellness. Provide a concise, thorough, and stand-alone answer to the user's question based on the given context. Include relevant examples or schedules where beneficial. **When listing steps or guidelines, format them as a numbered list with appropriate markdown formatting.** The final answer should be coherent, self-contained, and end with a complete sentence.
|
116 |
+
Context:
|
|
|
117 |
{context}
|
118 |
+
Question:
|
|
|
119 |
{question}
|
120 |
+
Final Answer:
|
|
|
121 |
"""
|
122 |
)
|
123 |
|
|
|
142 |
return "The system is currently unavailable. Please try again later."
|
143 |
try:
|
144 |
answer = rag_chain.run(question)
|
145 |
+
# Remove or modify ensure_complete_sentences if necessary
|
146 |
+
# complete_answer = ensure_complete_sentences(answer)
|
147 |
+
complete_answer = answer
|
148 |
return complete_answer
|
149 |
except Exception as e_inner:
|
150 |
logger.error(f"Error: {e_inner}")
|
|
|
153 |
def gradio_interface(model, temperature, max_tokens, question):
|
154 |
return answer_question(model, temperature, max_tokens, question)
|
155 |
|
|
|
156 |
interface = gr.Interface(
|
157 |
fn=gradio_interface,
|
158 |
inputs=[
|
|
|
161 |
gr.Slider(label="Max Tokens", minimum=200, maximum=2048, step=1, value=max_tokens),
|
162 |
gr.Textbox(label="Question", placeholder="e.g., What is box breathing and how does it help reduce anxiety?")
|
163 |
],
|
164 |
+
outputs=gr.Markdown(label="Answer"), # Updated output component
|
165 |
title="Daily Wellness AI",
|
166 |
+
description="Ask questions about daily wellness and receive a concise, complete answer.",
|
167 |
examples=[
|
168 |
+
["llama3-8b-8192", 0.7, 500, "What is box breathing and how does it help reduce anxiety?"],
|
169 |
["llama3-8b-8192", 0.6, 600, "Give me a weekly fitness schedule incorporating mindfulness exercises."]
|
170 |
],
|
171 |
allow_flagging="never"
|