Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import torch
|
3 |
+
from fastapi import FastAPI
|
4 |
+
from pydantic import BaseModel
|
5 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
6 |
+
import uvicorn
|
7 |
+
|
8 |
+
# Define a Pydantic model for request validation
|
9 |
+
class Query(BaseModel):
|
10 |
+
text: str
|
11 |
+
|
12 |
+
# Initialize FastAPI app
|
13 |
+
app = FastAPI(title="Financial Chatbot API")
|
14 |
+
|
15 |
+
# Load your fine-tuned model and tokenizer
|
16 |
+
model_name = "Phoenix21/llama-3-2-3b-finetuned-finance"
|
17 |
+
model = AutoModelForCausalLM.from_pretrained(
|
18 |
+
model_name,
|
19 |
+
device_map="auto",
|
20 |
+
trust_remote_code=True
|
21 |
+
)
|
22 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
23 |
+
tokenizer.pad_token = tokenizer.eos_token
|
24 |
+
|
25 |
+
# Create a text-generation pipeline
|
26 |
+
chat_pipe = pipeline(
|
27 |
+
"text-generation",
|
28 |
+
model=model,
|
29 |
+
tokenizer=tokenizer,
|
30 |
+
max_new_tokens=256,
|
31 |
+
temperature=0.7,
|
32 |
+
top_p=0.95,
|
33 |
+
)
|
34 |
+
|
35 |
+
# Define an endpoint for generating responses
|
36 |
+
@app.post("/generate")
|
37 |
+
def generate(query: Query):
|
38 |
+
prompt = f"Question: {query.text}\nAnswer: "
|
39 |
+
response = chat_pipe(prompt)[0]["generated_text"]
|
40 |
+
return {"response": response}
|
41 |
+
|
42 |
+
# Run the app using uvicorn. Hugging Face Spaces sets the PORT environment variable.
|
43 |
+
if __name__ == "__main__":
|
44 |
+
port = int(os.environ.get("PORT", 8000))
|
45 |
+
uvicorn.run(app, host="0.0.0.0", port=port)
|