Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -3,10 +3,10 @@ import torch
|
|
3 |
from fastapi import FastAPI
|
4 |
from pydantic import BaseModel
|
5 |
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
6 |
-
from peft import PeftModel
|
7 |
import uvicorn
|
8 |
-
|
9 |
-
from huggingface_hub import login
|
10 |
|
11 |
# Authenticate with Hugging Face Hub
|
12 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
@@ -29,17 +29,41 @@ model = AutoModelForCausalLM.from_pretrained(
|
|
29 |
trust_remote_code=True
|
30 |
)
|
31 |
|
32 |
-
# Load adapter from your checkpoint with a
|
33 |
peft_model_id = "Phoenix21/llama-3-2-3b-finetuned-finance_checkpoint2"
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
|
44 |
# Load tokenizer from the base model
|
45 |
tokenizer = AutoTokenizer.from_pretrained(base_model_name, trust_remote_code=True)
|
@@ -59,8 +83,10 @@ chat_pipe = pipeline(
|
|
59 |
def generate(query: Query):
|
60 |
prompt = f"Question: {query.text}\nAnswer: "
|
61 |
response = chat_pipe(prompt)[0]["generated_text"]
|
62 |
-
|
|
|
|
|
63 |
|
64 |
if __name__ == "__main__":
|
65 |
port = int(os.environ.get("PORT", 7860))
|
66 |
-
uvicorn.run(app, host="0.0.0.0", port=port)
|
|
|
3 |
from fastapi import FastAPI
|
4 |
from pydantic import BaseModel
|
5 |
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
6 |
+
from peft import PeftModel
|
7 |
import uvicorn
|
8 |
+
import json
|
9 |
+
from huggingface_hub import hf_hub_download, login
|
10 |
|
11 |
# Authenticate with Hugging Face Hub
|
12 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
|
|
29 |
trust_remote_code=True
|
30 |
)
|
31 |
|
32 |
+
# Load adapter from your checkpoint with a fix for the 'eva_config' issue
|
33 |
peft_model_id = "Phoenix21/llama-3-2-3b-finetuned-finance_checkpoint2"
|
34 |
+
|
35 |
+
# Manually download and load the adapter config to filter out problematic fields
|
36 |
+
try:
|
37 |
+
# Download the adapter_config.json file
|
38 |
+
config_file = hf_hub_download(
|
39 |
+
repo_id=peft_model_id,
|
40 |
+
filename="adapter_config.json",
|
41 |
+
token=HF_TOKEN
|
42 |
+
)
|
43 |
+
|
44 |
+
# Load and clean the config
|
45 |
+
with open(config_file, 'r') as f:
|
46 |
+
config_dict = json.load(f)
|
47 |
+
|
48 |
+
# Remove problematic fields if they exist
|
49 |
+
if "eva_config" in config_dict:
|
50 |
+
del config_dict["eva_config"]
|
51 |
+
|
52 |
+
# Load the adapter directly with the cleaned config
|
53 |
+
model = PeftModel.from_pretrained(
|
54 |
+
model,
|
55 |
+
peft_model_id,
|
56 |
+
config=config_dict
|
57 |
+
)
|
58 |
+
except Exception as e:
|
59 |
+
print(f"Error loading adapter: {e}")
|
60 |
+
# Fallback to direct loading if the above fails
|
61 |
+
model = PeftModel.from_pretrained(
|
62 |
+
model,
|
63 |
+
peft_model_id,
|
64 |
+
# Use this config parameter to ignore unknown parameters
|
65 |
+
config=None
|
66 |
+
)
|
67 |
|
68 |
# Load tokenizer from the base model
|
69 |
tokenizer = AutoTokenizer.from_pretrained(base_model_name, trust_remote_code=True)
|
|
|
83 |
def generate(query: Query):
|
84 |
prompt = f"Question: {query.text}\nAnswer: "
|
85 |
response = chat_pipe(prompt)[0]["generated_text"]
|
86 |
+
# Extract only the answer part from the response
|
87 |
+
answer = response.split("Answer: ")[-1].strip()
|
88 |
+
return {"response": answer}
|
89 |
|
90 |
if __name__ == "__main__":
|
91 |
port = int(os.environ.get("PORT", 7860))
|
92 |
+
uvicorn.run(app, host="0.0.0.0", port=port)
|