Spaces:
Sleeping
Sleeping
File size: 24,244 Bytes
0fc4dff 7654a21 0fc4dff ed6369b e2825d5 54b13ed 70a5e17 797ab8a 0fc4dff 145f8c2 0fc4dff 81ce286 0fc4dff 0eedb96 0b5f9aa 0eedb96 81ce286 d71a43c 0fc4dff 81ce286 0fc4dff 81ce286 0fc4dff 81ce286 5d99dd3 81ce286 0fc4dff ed6369b 81ce286 ed6369b e325864 ed6369b 5cda1d3 81ce286 d05df24 727de63 70a5e17 7654a21 81ce286 d05df24 e325864 ed6369b 81ce286 d05df24 ed6369b 81ce286 0fc4dff 81ce286 0fc4dff 81ce286 0fc4dff 81ce286 0fc4dff 81ce286 0fc4dff 54b13ed 0fc4dff 54b13ed 0fc4dff 54b13ed 0fc4dff 54b13ed 0fc4dff 81ce286 0fc4dff 81ce286 0fc4dff 81ce286 0fc4dff 81ce286 0fc4dff 81ce286 0fc4dff b538658 0fc4dff 81ce286 0fc4dff 81ce286 0fc4dff b538658 0fc4dff 81ce286 0fc4dff 81ce286 0fc4dff 81ce286 0fc4dff e857f76 0fc4dff 81ce286 830d261 0fc4dff 81ce286 0fc4dff 81ce286 f6b1707 0fc4dff 81ce286 0fc4dff 81ce286 0fc4dff 81ce286 0fc4dff 81ce286 0fc4dff 81ce286 0fc4dff 81ce286 0fc4dff 81ce286 0fc4dff 81ce286 827152a 81ce286 0fc4dff 81ce286 0fc4dff 81ce286 827152a 81ce286 827152a 81ce286 827152a 81ce286 827152a 81ce286 827152a 81ce286 0fc4dff 81ce286 0fc4dff 81ce286 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 |
import os
import logging
import re
import time
import gc
from datetime import datetime
from typing import Optional, List, Dict, Any
from collections import OrderedDict
import pandas as pd
from pydantic import BaseModel, Field, ValidationError, validator
import nltk
from nltk.corpus import words
try:
english_words = set(words.words())
except LookupError:
nltk.download('words')
english_words = set(words.words())
from langchain_groq import ChatGroq
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_community.vectorstores import FAISS
from langchain.chains import RetrievalQA, LLMChain
from langchain.prompts import PromptTemplate
from langchain.docstore.document import Document
from langchain_core.caches import BaseCache
from langchain_core.callbacks import Callbacks
from langchain_community.tools import TavilySearchResults
from chain.classification_chain import get_classification_chain
from chain.refusal_chain import get_refusal_chain
from chain.tailor_chain import get_tailor_chain
from chain.cleaner_chain import get_cleaner_chain
from chain.tailor_chain_wellnessBrand import get_tailor_chain_wellnessBrand
from mistralai import Mistral
from smolagents import (
CodeAgent,
DuckDuckGoSearchTool,
HfApiModel,
ToolCallingAgent,
VisitWebpageTool,
)
from chain.prompts import selfharm_prompt, frustration_prompt, ethical_conflict_prompt, classification_prompt, refusal_prompt, tailor_prompt, cleaner_prompt
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
from langchain_core.tracers import LangChainTracer
from langsmith import Client
os.environ["LANGCHAIN_TRACING_V2"] = "true"
os.environ["LANGSMITH_ENDPOINT"] = "https://api.smith.langchain.com"
os.environ["LANGCHAIN_API_KEY"] = os.getenv("LANGCHAIN_API_KEY")
os.environ["LANGCHAIN_PROJECT"] = os.getenv("LANGCHAIN_PROJECT")
# Basic Models
class QueryInput(BaseModel):
query: str = Field(..., min_length=1)
@validator('query')
def check_query_is_string(cls, v):
if not isinstance(v, str):
raise ValueError("Query must be a valid string")
if not v.strip():
raise ValueError("Query cannot be empty or whitespace")
return v.strip()
class ProcessingMetrics(BaseModel):
total_requests: int = 0
cache_hits: int = 0
errors: int = 0
average_response_time: float = 0.0
last_reset: Optional[datetime] = None
def update_metrics(self, processing_time: float, is_cache_hit: bool = False):
self.total_requests += 1
if is_cache_hit:
self.cache_hits += 1
self.average_response_time = (
(self.average_response_time * (self.total_requests - 1) + processing_time)
/ self.total_requests
)
# Mistral Moderation
class ModerationResult(BaseModel):
is_safe: bool
categories: Dict[str, bool]
original_text: str
mistral_api_key = os.environ.get("MISTRAL_API_KEY")
client = Mistral(api_key=mistral_api_key)
def moderate_text(query: str) -> ModerationResult:
"""Moderates text using Mistral to detect unsafe content."""
try:
query_input = QueryInput(query=query)
response = client.classifiers.moderate_chat(
model="mistral-moderation-latest",
inputs=[{"role": "user", "content": query_input.query}]
)
is_safe = True
categories = {}
if hasattr(response, 'results') and response.results:
cats = response.results[0].categories
categories = {
"violence": cats.get("violence_and_threats", False),
"hate": cats.get("hate_and_discrimination", False),
"dangerous": cats.get("dangerous_and_criminal_content", False),
"selfharm": cats.get("selfharm", False)
}
is_safe = not any(categories.values())
return ModerationResult(
is_safe=is_safe,
categories=categories,
original_text=query_input.query
)
except ValidationError as ve:
raise ValueError(f"Moderation input validation failed: {ve}")
except Exception as e:
raise RuntimeError(f"Moderation failed: {e}")
def compute_moderation_severity(mresult: ModerationResult) -> float:
"""Computes severity score based on moderation flags."""
severity = 0.0
for flag in mresult.categories.values():
if flag:
severity += 0.3
return min(severity, 1.0)
# Models
GROQ_MODELS = {
"default": "llama3-70b-8192",
"classification": "qwen-qwq-32b",
"moderation": "mistral-moderation-latest",
"combination": "llama-3.3-70b-versatile"
}
MAX_RETRIES = 3
RATE_LIMIT_REQUESTS = 60
CACHE_SIZE_LIMIT = 1000
class NoCache(BaseCache):
"""No-op cache implementation for ChatGroq."""
def __init__(self):
pass
def lookup(self, prompt, llm_string):
return None
def update(self, prompt, llm_string, return_val):
pass
def clear(self):
pass
ChatGroq.model_rebuild()
try:
fallback_groq_api_key = os.environ.get("GROQ_API_KEY_FALLBACK", os.environ.get("GROQ_API_KEY"))
if not fallback_groq_api_key:
logger.warning("No Groq API key found for fallback LLM")
groq_fallback_llm = ChatGroq(
model=GROQ_MODELS["default"],
temperature=0.7,
groq_api_key=fallback_groq_api_key,
max_tokens=2048,
cache=NoCache(),
callbacks=[]
)
except Exception as e:
logger.error(f"Failed to initialize fallback Groq LLM: {e}")
raise RuntimeError("ChatGroq initialization failed.") from e
# Rate-limit & Cache
def handle_rate_limiting(state: "PipelineState") -> bool:
"""Enforces rate limiting based on request timestamps."""
current_time = time.time()
one_min_ago = current_time - 60
state.request_timestamps = [t for t in state.request_timestamps if t > one_min_ago]
if len(state.request_timestamps) >= RATE_LIMIT_REQUESTS:
return False
state.request_timestamps.append(current_time)
return True
def manage_cache(state: "PipelineState", query: str, response: str = None) -> Optional[str]:
"""Manages cache for query responses."""
cache_key = query.strip().lower()
if response is None:
return state.cache.get(cache_key)
if cache_key in state.cache:
state.cache.move_to_end(cache_key)
state.cache[cache_key] = response
if len(state.cache) > CACHE_SIZE_LIMIT:
state.cache.popitem(last=False)
return None
def create_error_response(error_type: str, details: str = "") -> str:
"""Generates standardized error messages."""
templates = {
"validation": "I couldn't process your query: {details}",
"processing": "I encountered an error while processing: {details}",
"rate_limit": "Too many requests. Please try again soon.",
"general": "Apologies, but something went wrong."
}
return templates.get(error_type, templates["general"]).format(details=details)
# Web Search
web_search_cache: Dict[str, str] = {}
def store_websearch_result(query: str, result: str):
web_search_cache[query.strip().lower()] = result
def retrieve_websearch_result(query: str) -> Optional[str]:
return web_search_cache.get(query.strip().lower())
def do_web_search(query: str) -> str:
"""Performs web search using Tavily if no cached result exists."""
try:
cached = retrieve_websearch_result(query)
if cached:
logger.info("Using cached web search result.")
return cached
logger.info("Performing a new Tavily web search for: '%s'", query)
#Intialize Tavily search tool
tavily_api_key = os.environ.get("TAVILY_API_KEY")
if not tavily_api_key:
logger.error("Tavily API key not found.")
return "Unable to perform web search API key not set"
#Create Tavily Search Tool
tavily_search=TavilySearchResults(api_key=tavily_api_key)
#Perform search
search_results = tavily_search.search(query, num_results=3)
result_text = "Web Search Results:\n\n"
for i, result in enumerate(search_results):
result_text += f"{i+1}. {result.get('title', 'No Title')}\n"
result_text += f" URL: {result.get('url', 'No URL')}\n"
result_text += f" {result.get('content', 'No content available')[:300]}...\n\n"
store_websearch_result(query, result_text)
return result_text.strip()
except Exception as e:
logger.error(f"Tavily Web search failed: {e}")
return ""
def is_greeting(query: str) -> bool:
"""Detects if the query is a greeting."""
greetings = {"hello", "hi", "hey", "hii", "hola", "greetings"}
cleaned = re.sub(r'[^\w\s]', '', query).strip().lower()
words_in_query = set(cleaned.split())
return not words_in_query.isdisjoint(greetings)
# Vector Stores & RAG
def build_or_load_vectorstore(csv_path: str, store_dir: str) -> FAISS:
"""Builds or loads FAISS vector store from CSV data."""
if os.path.exists(store_dir):
logger.info(f"Loading existing FAISS store from {store_dir}")
embeddings = HuggingFaceEmbeddings(
model_name="sentence-transformers/multi-qa-mpnet-base-dot-v1"
)
return FAISS.load_local(store_dir, embeddings, allow_dangerous_deserialization=True)
else:
logger.info(f"Building new FAISS store from {csv_path}")
df = pd.read_csv(csv_path)
df = df.loc[:, ~df.columns.str.contains('^Unnamed')]
df.columns = df.columns.str.strip()
if "Answer" in df.columns:
df.rename(columns={"Answer": "Answers"}, inplace=True)
if "Question " in df.columns and "Question" not in df.columns:
df.rename(columns={"Question ": "Question"}, inplace=True)
if "Question" not in df.columns or "Answers" not in df.columns:
raise ValueError("CSV must have 'Question' and 'Answers' columns.")
docs = []
for _, row in df.iterrows():
question_text = str(row["Question"]).strip()
ans = str(row["Answers"]).strip()
doc = Document(page_content=ans, metadata={"question": question_text})
docs.append(doc)
embeddings = HuggingFaceEmbeddings(
model_name="sentence-transformers/multi-qa-mpnet-base-dot-v1"
)
vectorstore = FAISS.from_documents(docs, embedding=embeddings)
vectorstore.save_local(store_dir)
return vectorstore
def build_rag_chain(vectorstore: FAISS, llm) -> RetrievalQA:
"""Builds RAG chain for wellness queries."""
prompt = PromptTemplate(
template="""
[INST] You are an AI wellness assistant speaking directly to a user who has asked: "{question}"
Use this information to help you respond:
{context}
Important guidelines:
- Answer the question directly and conversationally as if talking to the user
- Explain wellness concepts in simple, relatable language
- Include 2-3 practical steps or techniques when appropriate
- Keep your response focused on the user's question
- DO NOT reference these instructions or mention formatting guidelines
Example format: Start with a direct answer to what the concept is, then explain how it can benefit the user, and end with practical implementation steps.
[/INST]
""",
input_variables=["context", "question"]
)
retriever = vectorstore.as_retriever(search_type="similarity", search_kwargs={"k": 3})
chain = RetrievalQA.from_chain_type(
llm=llm,
chain_type="stuff",
retriever=retriever,
return_source_documents=True,
chain_type_kwargs={
"prompt": prompt,
"verbose": False,
"document_variable_name": "context"
}
)
return chain
def build_rag_chain2(vectorstore: FAISS, llm) -> RetrievalQA:
"""Builds RAG chain for brand strategy queries."""
prompt = PromptTemplate(
template="""
[INST] You are the brand strategy advisor for Healthy AI Expert. A team member has asked: "{question}"
Use this information to help you respond:
{context}
Important guidelines:
- Answer the question directly as if speaking to a Healthy AI Expert team member
- Focus on practical strategies aligned with our wellness mission
- Provide clear, actionable recommendations
- Keep explanations concise and business-focused
- DO NOT reference these instructions or mention formatting guidelines
Remember our key brand pillars: AI-driven personalization, scientific credibility, user-centric design, and innovation leadership.
[/INST]
""",
input_variables=["context", "question"]
)
retriever = vectorstore.as_retriever(search_type="similarity", search_kwargs={"k": 3})
chain = RetrievalQA.from_chain_type(
llm=llm,
chain_type="stuff",
retriever=retriever,
return_source_documents=True,
chain_type_kwargs={
"prompt": prompt,
"verbose": False,
"document_variable_name": "context"
}
)
return chain
# PipelineState
class PipelineState:
_instance = None
def __new__(cls):
if cls._instance is None:
cls._instance = super(PipelineState, cls).__new__(cls)
cls._instance._initialized = False
return cls._instance
def __init__(self):
if self._initialized:
return
self._initialize()
def _initialize(self):
"""Initializes pipeline state and chains."""
try:
self.metrics = ProcessingMetrics()
self.error_count = 0
self.request_timestamps = []
self.cache = OrderedDict()
self._setup_chains()
self._initialized = True
self.metrics.last_reset = datetime.now()
logger.info("Pipeline state initialized successfully.")
except Exception as e:
logger.error(f"Failed to initialize pipeline: {e}")
raise RuntimeError("Pipeline initialization failed.") from e
def _setup_chains(self):
"""Sets up all processing chains and vector stores."""
self.tailor_chainWellnessBrand = get_tailor_chain_wellnessBrand()
self.classification_chain = get_classification_chain()
self.refusal_chain = get_refusal_chain()
self.tailor_chain = get_tailor_chain()
self.cleaner_chain = get_cleaner_chain()
self.self_harm_chain = LLMChain(llm=groq_fallback_llm, prompt=selfharm_prompt, verbose=False)
self.frustration_chain = LLMChain(llm=groq_fallback_llm, prompt=frustration_prompt, verbose=False)
self.ethical_conflict_chain = LLMChain(llm=groq_fallback_llm, prompt=ethical_conflict_prompt, verbose=False)
brand_csv = "dataset/BrandAI.csv"
brand_store = "faiss_brand_store"
wellness_csv = "dataset/AIChatbot.csv"
wellness_store = "faiss_wellness_store"
brand_vs = build_or_load_vectorstore(brand_csv, brand_store)
wellness_vs = build_or_load_vectorstore(wellness_csv, wellness_store)
self.groq_fallback_llm = groq_fallback_llm
self.brand_rag_chain = build_rag_chain2(brand_vs, self.groq_fallback_llm)
self.wellness_rag_chain = build_rag_chain(wellness_vs, self.groq_fallback_llm)
def handle_error(self, error: Exception) -> bool:
"""Handles errors and triggers reset if needed."""
self.error_count += 1
self.metrics.errors += 1
if self.error_count >= MAX_RETRIES:
logger.warning("Max error reached, resetting pipeline.")
self.reset()
return False
return True
def reset(self):
"""Resets pipeline state while preserving metrics."""
try:
logger.info("Resetting pipeline state.")
old_metrics = self.metrics
self._initialized = False
self.__init__()
self.metrics = old_metrics
self.metrics.last_reset = datetime.now()
self.error_count = 0
gc.collect()
logger.info("Pipeline state reset done.")
except Exception as e:
logger.error(f"Reset pipeline failed: {e}")
raise RuntimeError("Failed to reset pipeline.")
def get_metrics(self) -> Dict[str, Any]:
"""Returns pipeline performance metrics."""
uptime = (datetime.now() - self.metrics.last_reset).total_seconds() / 3600
return {
"total_requests": self.metrics.total_requests,
"cache_hits": self.metrics.cache_hits,
"error_rate": self.metrics.errors / max(self.metrics.total_requests, 1),
"average_response_time": self.metrics.average_response_time,
"uptime_hours": uptime
}
def update_metrics(self, start_time: float, is_cache_hit: bool = False):
"""Updates processing metrics."""
duration = time.time() - start_time
self.metrics.update_metrics(duration, is_cache_hit)
pipeline_state = PipelineState()
# Helper Checks
def is_aggressive_or_harsh(query: str) -> bool:
"""Detects aggressive or harsh language in query."""
triggers = ["useless", "worthless", "you cannot do anything", "so bad at answering"]
for t in triggers:
if t in query.lower():
return True
return False
def is_ethical_conflict(query: str) -> bool:
"""Detects ethical dilemmas in query."""
ethics_keywords = ["should i lie", "should i cheat", "revenge", "get back at", "hurt them back"]
q_lower = query.lower()
return any(k in q_lower for k in ethics_keywords)
# Main Pipeline
def run_with_chain(query: str) -> str:
"""Processes query through validation, moderation, and chains."""
start_time = time.time()
try:
if not query or query.strip() == "":
return create_error_response("validation", "Empty query.")
if len(query.strip()) < 2:
return create_error_response("validation", "Too short.")
words_in_text = re.findall(r'\b\w+\b', query.lower())
if not any(w in english_words for w in words_in_text):
return create_error_response("validation", "Unclear words.")
if len(query) > 500:
return create_error_response("validation", "Too long (>500).")
if not handle_rate_limiting(pipeline_state):
return create_error_response("rate_limit")
if is_greeting(query):
greeting_response = "Hello there!! Welcome to Healthy AI Expert, How may I assist you today?"
manage_cache(pipeline_state, query, greeting_response)
pipeline_state.update_metrics(start_time)
return greeting_response
cached = manage_cache(pipeline_state, query)
if cached:
pipeline_state.update_metrics(start_time, is_cache_hit=True)
return cached
try:
mod_res = moderate_text(query)
severity = compute_moderation_severity(mod_res)
if mod_res.categories.get("selfharm", False):
logger.info("Self-harm flagged => providing supportive chain response.")
selfharm_resp = pipeline_state.self_harm_chain.run({"query": query})
final_tailored = pipeline_state.tailor_chain.run({"response": selfharm_resp}).strip()
manage_cache(pipeline_state, query, final_tailored)
pipeline_state.update_metrics(start_time)
return final_tailored
if mod_res.categories.get("hate", False):
logger.info("Hate content => refusal.")
refusal_resp = pipeline_state.refusal_chain.run({"topic": "moderation_flagged"})
manage_cache(pipeline_state, query, refusal_resp)
pipeline_state.update_metrics(start_time)
return refusal_resp
except Exception as e:
logger.error(f"Moderation error: {e}")
severity = 0.0
if is_aggressive_or_harsh(query):
logger.info("Detected harsh/aggressive language => frustration_chain.")
frustration_resp = pipeline_state.frustration_chain.run({"query": query})
final_tailored = pipeline_state.tailor_chain.run({"response": frustration_resp}).strip()
manage_cache(pipeline_state, query, final_tailored)
pipeline_state.update_metrics(start_time)
return final_tailored
if is_ethical_conflict(query):
logger.info("Detected ethical dilemma => ethical_conflict_chain.")
ethical_resp = pipeline_state.ethical_conflict_chain.run({"query": query})
final_tailored = pipeline_state.tailor_chain.run({"response": ethical_resp}).strip()
manage_cache(pipeline_state, query, final_tailored)
pipeline_state.update_metrics(start_time)
return final_tailored
try:
class_out = pipeline_state.classification_chain.run({"query": query})
classification = class_out.strip().lower()
except Exception as e:
logger.error(f"Classification error: {e}")
if not pipeline_state.handle_error(e):
return create_error_response("processing", "Classification error.")
return create_error_response("processing")
if classification in ["outofscope", "out_of_scope"]:
try:
refusal_text = pipeline_state.refusal_chain.run({"topic": query})
tailored_refusal = pipeline_state.tailor_chain.run({"response": refusal_text}).strip()
manage_cache(pipeline_state, query, tailored_refusal)
pipeline_state.update_metrics(start_time)
return tailored_refusal
except Exception as e:
logger.error(f"Refusal chain error: {e}")
if not pipeline_state.handle_error(e):
return create_error_response("processing", "Refusal error.")
return create_error_response("processing")
if classification == "brand":
rag_chain_main = pipeline_state.brand_rag_chain
else:
rag_chain_main = pipeline_state.wellness_rag_chain
try:
rag_output = rag_chain_main({"query": query})
if isinstance(rag_output, dict) and "result" in rag_output:
csv_ans = rag_output["result"].strip()
else:
csv_ans = str(rag_output).strip()
if "not enough context" in csv_ans.lower() or len(csv_ans) < 40:
logger.info("Insufficient RAG => web search.")
web_info = do_web_search(query)
if web_info:
csv_ans += f"\n\nAdditional info:\n{web_info}"
except Exception as e:
logger.error(f"RAG error: {e}")
if not pipeline_state.handle_error(e):
return create_error_response("processing", "RAG error.")
return create_error_response("processing")
try:
final_tailored = pipeline_state.tailor_chainWellnessBrand.run({"response": csv_ans}).strip()
if severity > 0.5:
final_tailored += "\n\n(Please note: This may involve sensitive content.)"
manage_cache(pipeline_state, query, final_tailored)
pipeline_state.update_metrics(start_time)
return final_tailored
except Exception as e:
logger.error(f"Tailor chain error: {e}")
if not pipeline_state.handle_error(e):
return create_error_response("processing", "Tailoring error.")
return create_error_response("processing")
except Exception as e:
logger.error(f"Critical error in run_with_chain: {e}")
pipeline_state.metrics.errors += 1
return create_error_response("general")
logger.info("Pipeline initialization complete!") |