fix: Refine handle_query prompts to exclude internal instructions from user responses 1
Browse files- Updated the handle_query function to remove conversational preambles that were being included in user-facing answers.
- Added explicit instructions within prompts to prevent the model from echoing back any part of the prompt.
- Structured prompts clearly with separators and labels to guide the model in generating clean, relevant responses.
- Ensured that only the synthesized and enhanced answers are presented to the user without any internal prompt text.
last working 1e7a57d99fc7d6862f193e11598041bc6e68fb7a
app.py
CHANGED
@@ -1,373 +1,3 @@
|
|
1 |
-
# app.py
|
2 |
-
|
3 |
-
import os
|
4 |
-
import pandas as pd
|
5 |
-
import chardet
|
6 |
-
import logging
|
7 |
-
import gradio as gr
|
8 |
-
import json
|
9 |
-
import hashlib
|
10 |
-
import numpy as np # ADDED for easy array handling
|
11 |
-
from typing import Optional, List, Tuple, ClassVar, Dict
|
12 |
-
|
13 |
-
from sentence_transformers import SentenceTransformer, util, CrossEncoder
|
14 |
-
from langchain.llms.base import LLM
|
15 |
-
import google.generativeai as genai
|
16 |
-
|
17 |
-
# Import smolagents components
|
18 |
-
from smolagents import CodeAgent, LiteLLMModel, DuckDuckGoSearchTool, ManagedAgent
|
19 |
-
|
20 |
-
###############################################################################
|
21 |
-
# 1) Logging Setup
|
22 |
-
###############################################################################
|
23 |
-
logging.basicConfig(level=logging.INFO)
|
24 |
-
logger = logging.getLogger("Daily Wellness AI")
|
25 |
-
|
26 |
-
###############################################################################
|
27 |
-
# 2) API Key Handling and Enhanced GeminiLLM Class
|
28 |
-
###############################################################################
|
29 |
-
def clean_api_key(key: str) -> str:
|
30 |
-
"""Remove non-ASCII characters and strip whitespace from the API key."""
|
31 |
-
return ''.join(c for c in key if ord(c) < 128).strip()
|
32 |
-
|
33 |
-
# Load the GEMINI API key from environment variables
|
34 |
-
gemini_api_key = os.environ.get("GEMINI_API_KEY")
|
35 |
-
|
36 |
-
if not gemini_api_key:
|
37 |
-
logger.error("GEMINI_API_KEY environment variable not set.")
|
38 |
-
raise EnvironmentError("Please set the GEMINI_API_KEY environment variable.")
|
39 |
-
|
40 |
-
gemini_api_key = clean_api_key(gemini_api_key)
|
41 |
-
logger.info("GEMINI API Key loaded successfully.")
|
42 |
-
|
43 |
-
# Configure Google Generative AI
|
44 |
-
try:
|
45 |
-
genai.configure(api_key=gemini_api_key)
|
46 |
-
logger.info("Configured Google Generative AI with provided API key.")
|
47 |
-
except Exception as e:
|
48 |
-
logger.error(f"Failed to configure Google Generative AI: {e}")
|
49 |
-
raise e
|
50 |
-
|
51 |
-
class GeminiLLM(LLM):
|
52 |
-
model_name: ClassVar[str] = "gemini-2.0-flash-exp"
|
53 |
-
temperature: float = 0.7
|
54 |
-
top_p: float = 0.95
|
55 |
-
top_k: int = 40
|
56 |
-
max_tokens: int = 2048
|
57 |
-
|
58 |
-
@property
|
59 |
-
def _llm_type(self) -> str:
|
60 |
-
return "custom_gemini"
|
61 |
-
|
62 |
-
def _call(self, prompt: str, stop: Optional[List[str]] = None) -> str:
|
63 |
-
generation_config = {
|
64 |
-
"temperature": self.temperature,
|
65 |
-
"top_p": self.top_p,
|
66 |
-
"top_k": self.top_k,
|
67 |
-
"max_output_tokens": self.max_tokens,
|
68 |
-
}
|
69 |
-
|
70 |
-
try:
|
71 |
-
logger.debug(f"Initializing GenerativeModel with config: {generation_config}")
|
72 |
-
model = genai.GenerativeModel(
|
73 |
-
model_name=self.model_name,
|
74 |
-
generation_config=generation_config,
|
75 |
-
)
|
76 |
-
logger.debug("GenerativeModel initialized successfully.")
|
77 |
-
|
78 |
-
chat_session = model.start_chat(history=[])
|
79 |
-
logger.debug("Chat session started.")
|
80 |
-
|
81 |
-
# Use role-based messages if supported
|
82 |
-
system_message = {
|
83 |
-
"role": "system",
|
84 |
-
"content": "You are Daily Wellness AI, a friendly and professional wellness assistant."
|
85 |
-
}
|
86 |
-
user_message = {
|
87 |
-
"role": "user",
|
88 |
-
"content": prompt
|
89 |
-
}
|
90 |
-
|
91 |
-
chat_session.send_message(system_message)
|
92 |
-
chat_session.send_message(user_message)
|
93 |
-
|
94 |
-
response = chat_session.get_response()
|
95 |
-
logger.debug(f"Raw response received: {response.text}")
|
96 |
-
|
97 |
-
return response.text
|
98 |
-
except Exception as e:
|
99 |
-
logger.error(f"Error generating response with GeminiLLM: {e}")
|
100 |
-
logger.debug("Exception details:", exc_info=True)
|
101 |
-
raise e
|
102 |
-
|
103 |
-
# Instantiate the GeminiLLM globally
|
104 |
-
llm = GeminiLLM()
|
105 |
-
|
106 |
-
###############################################################################
|
107 |
-
# 3) CSV Loading and Processing
|
108 |
-
###############################################################################
|
109 |
-
def load_csv(file_path: str):
|
110 |
-
try:
|
111 |
-
if not os.path.isfile(file_path):
|
112 |
-
logger.error(f"CSV file does not exist: {file_path}")
|
113 |
-
return [], []
|
114 |
-
|
115 |
-
with open(file_path, 'rb') as f:
|
116 |
-
result = chardet.detect(f.read())
|
117 |
-
encoding = result['encoding']
|
118 |
-
|
119 |
-
data = pd.read_csv(file_path, encoding=encoding)
|
120 |
-
if 'Question' not in data.columns or 'Answers' not in data.columns:
|
121 |
-
raise ValueError("CSV must contain 'Question' and 'Answers' columns.")
|
122 |
-
data = data.dropna(subset=['Question', 'Answers'])
|
123 |
-
|
124 |
-
logger.info(f"Loaded {len(data)} entries from {file_path}")
|
125 |
-
return data['Question'].tolist(), data['Answers'].tolist()
|
126 |
-
except Exception as e:
|
127 |
-
logger.error(f"Error loading CSV: {e}")
|
128 |
-
return [], []
|
129 |
-
|
130 |
-
# Path to your CSV file (ensure 'AIChatbot.csv' is in the repository)
|
131 |
-
csv_file_path = "AIChatbot.csv"
|
132 |
-
corpus_questions, corpus_answers = load_csv(csv_file_path)
|
133 |
-
if not corpus_questions:
|
134 |
-
raise ValueError("Failed to load the knowledge base.")
|
135 |
-
|
136 |
-
###############################################################################
|
137 |
-
# 4) Sentence Embeddings & Cross-Encoder
|
138 |
-
###############################################################################
|
139 |
-
embedding_model_name = "sentence-transformers/multi-qa-mpnet-base-dot-v1"
|
140 |
-
try:
|
141 |
-
embedding_model = SentenceTransformer(embedding_model_name)
|
142 |
-
logger.info(f"Loaded embedding model: {embedding_model_name}")
|
143 |
-
except Exception as e:
|
144 |
-
logger.error(f"Failed to load embedding model: {e}")
|
145 |
-
raise e
|
146 |
-
|
147 |
-
try:
|
148 |
-
question_embeddings = embedding_model.encode(corpus_questions, convert_to_tensor=True)
|
149 |
-
logger.info("Encoded question embeddings successfully.")
|
150 |
-
except Exception as e:
|
151 |
-
logger.error(f"Failed to encode question embeddings: {e}")
|
152 |
-
raise e
|
153 |
-
|
154 |
-
cross_encoder_name = "cross-encoder/ms-marco-MiniLM-L-6-v2"
|
155 |
-
try:
|
156 |
-
cross_encoder = CrossEncoder(cross_encoder_name)
|
157 |
-
logger.info(f"Loaded cross-encoder model: {cross_encoder_name}")
|
158 |
-
except Exception as e:
|
159 |
-
logger.error(f"Failed to load cross-encoder model: {e}")
|
160 |
-
raise e
|
161 |
-
|
162 |
-
###############################################################################
|
163 |
-
# 5) Retrieval + Re-Ranking
|
164 |
-
###############################################################################
|
165 |
-
class EmbeddingRetriever:
|
166 |
-
def __init__(self, questions, answers, embeddings, model, cross_encoder):
|
167 |
-
self.questions = questions
|
168 |
-
self.answers = answers
|
169 |
-
self.embeddings = embeddings
|
170 |
-
self.model = model
|
171 |
-
self.cross_encoder = cross_encoder
|
172 |
-
|
173 |
-
def retrieve(self, query: str, top_k: int = 3):
|
174 |
-
try:
|
175 |
-
query_embedding = self.model.encode(query, convert_to_tensor=True)
|
176 |
-
scores = util.pytorch_cos_sim(query_embedding, self.embeddings)[0].cpu().tolist()
|
177 |
-
scored_data = sorted(zip(self.questions, self.answers, scores), key=lambda x: x[2], reverse=True)[:top_k]
|
178 |
-
|
179 |
-
cross_inputs = [[query, candidate[0]] for candidate in scored_data]
|
180 |
-
cross_scores = self.cross_encoder.predict(cross_inputs)
|
181 |
-
|
182 |
-
reranked = sorted(zip(scored_data, cross_scores), key=lambda x: x[1], reverse=True)
|
183 |
-
final_retrieved = [(entry[0][1], entry[1]) for entry in reranked]
|
184 |
-
logger.debug(f"Retrieved and reranked answers: {final_retrieved}")
|
185 |
-
return final_retrieved
|
186 |
-
except Exception as e:
|
187 |
-
logger.error(f"Error during retrieval: {e}")
|
188 |
-
logger.debug("Exception details:", exc_info=True)
|
189 |
-
return []
|
190 |
-
|
191 |
-
retriever = EmbeddingRetriever(corpus_questions, corpus_answers, question_embeddings, embedding_model, cross_encoder)
|
192 |
-
|
193 |
-
###############################################################################
|
194 |
-
# 6) Sanity Check Tool
|
195 |
-
###############################################################################
|
196 |
-
class QuestionSanityChecker:
|
197 |
-
def __init__(self, llm: GeminiLLM):
|
198 |
-
self.llm = llm
|
199 |
-
|
200 |
-
def is_relevant(self, question: str) -> bool:
|
201 |
-
prompt = (
|
202 |
-
f"Determine whether the following question is relevant to daily wellness.\n\n"
|
203 |
-
f"Question: {question}\n\n"
|
204 |
-
f"Is the above question relevant to daily wellness? Respond with 'Yes' or 'No' only."
|
205 |
-
)
|
206 |
-
try:
|
207 |
-
response = self.llm._call(prompt)
|
208 |
-
is_yes = 'yes' in response.lower()
|
209 |
-
logger.debug(f"Sanity check response: {response}, interpreted as {is_yes}")
|
210 |
-
return is_yes
|
211 |
-
except Exception as e:
|
212 |
-
logger.error(f"Error in sanity check: {e}")
|
213 |
-
logger.debug("Exception details:", exc_info=True)
|
214 |
-
return False
|
215 |
-
|
216 |
-
# Instantiate the sanity checker globally
|
217 |
-
sanity_checker = QuestionSanityChecker(llm)
|
218 |
-
|
219 |
-
###############################################################################
|
220 |
-
# 7) smolagents Integration: GROQ Model and Web Search
|
221 |
-
###############################################################################
|
222 |
-
# Initialize the smolagents' LiteLLMModel with GROQ model
|
223 |
-
smol_model = LiteLLMModel("groq/llama3-8b-8192")
|
224 |
-
|
225 |
-
# Instantiate the DuckDuckGo search tool
|
226 |
-
search_tool = DuckDuckGoSearchTool()
|
227 |
-
|
228 |
-
# Create the web agent with the search tool
|
229 |
-
web_agent = CodeAgent(
|
230 |
-
tools=[search_tool],
|
231 |
-
model=smol_model
|
232 |
-
)
|
233 |
-
|
234 |
-
# Define the managed web agent
|
235 |
-
managed_web_agent = ManagedAgent(
|
236 |
-
agent=web_agent,
|
237 |
-
name="web_search",
|
238 |
-
description="Runs a web search for you. Provide your query as an argument."
|
239 |
-
)
|
240 |
-
|
241 |
-
# Create the manager agent with managed web agent and additional tools if needed
|
242 |
-
manager_agent = CodeAgent(
|
243 |
-
tools=[], # Add additional tools here if required
|
244 |
-
model=smol_model,
|
245 |
-
managed_agents=[managed_web_agent]
|
246 |
-
)
|
247 |
-
|
248 |
-
###############################################################################
|
249 |
-
# 8) Answer Expansion
|
250 |
-
###############################################################################
|
251 |
-
class AnswerExpander:
|
252 |
-
def __init__(self, llm: GeminiLLM):
|
253 |
-
self.llm = llm
|
254 |
-
|
255 |
-
def expand(self, query: str, retrieved_answers: List[str], detail: bool = False) -> str:
|
256 |
-
"""
|
257 |
-
Synthesize answers into a single cohesive response.
|
258 |
-
If detail=True, provide a more detailed response.
|
259 |
-
"""
|
260 |
-
try:
|
261 |
-
reference_block = "\n".join(
|
262 |
-
f"- {idx+1}) {ans}" for idx, ans in enumerate(retrieved_answers, start=1)
|
263 |
-
)
|
264 |
-
|
265 |
-
# ADDED: More elaboration if detail=True
|
266 |
-
detail_instructions = (
|
267 |
-
"Provide a thorough, in-depth explanation, adding relevant tips and context, "
|
268 |
-
"while remaining creative and brand-aligned. "
|
269 |
-
if detail else
|
270 |
-
"Provide a concise response in no more than 4 sentences."
|
271 |
-
)
|
272 |
-
|
273 |
-
prompt = (
|
274 |
-
f"Synthesize the following retrieved answers into a single cohesive, creative, and brand-aligned response. "
|
275 |
-
f"{detail_instructions} "
|
276 |
-
f"Conclude with a short inspirational note.\n\n"
|
277 |
-
f"Question: {query}\n\n"
|
278 |
-
f"Retrieved Answers:\n{reference_block}\n\n"
|
279 |
-
"Disclaimer: This is general wellness information and not a substitute for professional medical advice."
|
280 |
-
)
|
281 |
-
|
282 |
-
logger.debug(f"Generated prompt for answer expansion: {prompt}")
|
283 |
-
response = self.llm._call(prompt)
|
284 |
-
logger.debug(f"Expanded answer: {response}")
|
285 |
-
return response.strip()
|
286 |
-
except Exception as e:
|
287 |
-
logger.error(f"Error expanding answer: {e}")
|
288 |
-
logger.debug("Exception details:", exc_info=True)
|
289 |
-
return "Sorry, an error occurred while generating a response."
|
290 |
-
|
291 |
-
answer_expander = AnswerExpander(llm)
|
292 |
-
|
293 |
-
###############################################################################
|
294 |
-
# 9) Persistent Cache (ADDED)
|
295 |
-
###############################################################################
|
296 |
-
CACHE_FILE = "query_cache.json"
|
297 |
-
SIMILARITY_THRESHOLD_CACHE = 0.8 # Adjust for how close a query must be to reuse cache
|
298 |
-
|
299 |
-
def load_cache() -> Dict:
|
300 |
-
"""Load the cache from the local JSON file."""
|
301 |
-
if os.path.isfile(CACHE_FILE):
|
302 |
-
try:
|
303 |
-
with open(CACHE_FILE, "r", encoding="utf-8") as f:
|
304 |
-
return json.load(f)
|
305 |
-
except Exception as e:
|
306 |
-
logger.error(f"Failed to load cache file: {e}")
|
307 |
-
return {}
|
308 |
-
return {}
|
309 |
-
|
310 |
-
def save_cache(cache_data: Dict):
|
311 |
-
"""Save the cache dictionary to a local JSON file."""
|
312 |
-
try:
|
313 |
-
with open(CACHE_FILE, "w", encoding="utf-8") as f:
|
314 |
-
json.dump(cache_data, f, ensure_ascii=False, indent=2)
|
315 |
-
except Exception as e:
|
316 |
-
logger.error(f"Failed to save cache file: {e}")
|
317 |
-
|
318 |
-
def compute_hash(text: str) -> str:
|
319 |
-
"""Compute a simple hash for the text to handle duplicates in a consistent way."""
|
320 |
-
return hashlib.md5(text.encode("utf-8")).hexdigest()
|
321 |
-
|
322 |
-
# ADDED: Load cache at startup
|
323 |
-
cache_store = load_cache()
|
324 |
-
|
325 |
-
###############################################################################
|
326 |
-
# 9.1) Utility to attempt cached retrieval (ADDED)
|
327 |
-
###############################################################################
|
328 |
-
def get_cached_answer(query: str) -> Optional[str]:
|
329 |
-
"""
|
330 |
-
Returns a cached answer if there's a very similar query in the cache.
|
331 |
-
We'll compare embeddings to find if a stored query is above threshold.
|
332 |
-
"""
|
333 |
-
if not cache_store:
|
334 |
-
return None
|
335 |
-
|
336 |
-
# Compute embedding for the incoming query
|
337 |
-
query_embedding = embedding_model.encode(query, convert_to_tensor=True)
|
338 |
-
|
339 |
-
# Check all cached items
|
340 |
-
best_score = 0.0
|
341 |
-
best_answer = None
|
342 |
-
|
343 |
-
for cached_q, cache_data in cache_store.items():
|
344 |
-
stored_embedding = np.array(cache_data["embedding"], dtype=np.float32)
|
345 |
-
score = util.pytorch_cos_sim(query_embedding, stored_embedding)[0].item()
|
346 |
-
if score > best_score:
|
347 |
-
best_score = score
|
348 |
-
best_answer = cache_data["answer"]
|
349 |
-
|
350 |
-
if best_score >= SIMILARITY_THRESHOLD_CACHE:
|
351 |
-
logger.info(f"Cache hit! Similarity: {best_score:.2f}, returning cached answer.")
|
352 |
-
return best_answer
|
353 |
-
return None
|
354 |
-
|
355 |
-
def store_in_cache(query: str, answer: str):
|
356 |
-
"""
|
357 |
-
Store a query-answer pair in the cache with the query's embedding.
|
358 |
-
"""
|
359 |
-
query_embedding = embedding_model.encode(query, convert_to_tensor=True).cpu().tolist()
|
360 |
-
cache_key = compute_hash(query)
|
361 |
-
cache_store[cache_key] = {
|
362 |
-
"query": query,
|
363 |
-
"answer": answer,
|
364 |
-
"embedding": query_embedding
|
365 |
-
}
|
366 |
-
save_cache(cache_store)
|
367 |
-
|
368 |
-
###############################################################################
|
369 |
-
# 10) Query Handling
|
370 |
-
###############################################################################
|
371 |
def handle_query(query: str, detail: bool = False) -> str:
|
372 |
"""
|
373 |
Main function to process the query.
|
@@ -413,6 +43,7 @@ def handle_query(query: str, detail: bool = False) -> str:
|
|
413 |
if cached_answer:
|
414 |
blend_prompt = (
|
415 |
f"Combine the following previous answer with the new web results to create a more creative and accurate response. "
|
|
|
416 |
f"Add positivity and conclude with a short inspirational note.\n\n"
|
417 |
f"Previous Answer:\n{cached_answer}\n\n"
|
418 |
f"Web Results:\n{web_search_response}"
|
@@ -438,6 +69,7 @@ def handle_query(query: str, detail: bool = False) -> str:
|
|
438 |
if cached_answer:
|
439 |
blend_prompt = (
|
440 |
f"Combine the previous answer with the newly retrieved answers to enhance creativity and accuracy. "
|
|
|
441 |
f"Add new insights, creativity, and conclude with a short inspirational note.\n\n"
|
442 |
f"Previous Answer:\n{cached_answer}\n\n"
|
443 |
f"New Retrieved Answers:\n" + "\n".join(f"- {r}" for r in responses)
|
@@ -455,58 +87,3 @@ def handle_query(query: str, detail: bool = False) -> str:
|
|
455 |
logger.error(f"Error handling query: {e}")
|
456 |
logger.debug("Exception details:", exc_info=True)
|
457 |
return "An error occurred while processing your request."
|
458 |
-
|
459 |
-
###############################################################################
|
460 |
-
# 11) Gradio Interface
|
461 |
-
###############################################################################
|
462 |
-
def gradio_interface(query: str, detail: bool):
|
463 |
-
"""
|
464 |
-
Gradio interface function that optionally takes a detail parameter for longer responses.
|
465 |
-
"""
|
466 |
-
try:
|
467 |
-
response = handle_query(query, detail=detail)
|
468 |
-
formatted_response = response # Response is already formatted
|
469 |
-
return formatted_response
|
470 |
-
except Exception as e:
|
471 |
-
logger.error(f"Error in Gradio interface: {e}")
|
472 |
-
logger.debug("Exception details:", exc_info=True)
|
473 |
-
return "**An error occurred while processing your request. Please try again later.**"
|
474 |
-
|
475 |
-
# ADDED: We now have a checkbox for detail in the Gradio UI
|
476 |
-
interface = gr.Interface(
|
477 |
-
fn=gradio_interface,
|
478 |
-
inputs=[
|
479 |
-
gr.Textbox(
|
480 |
-
lines=2,
|
481 |
-
placeholder="e.g., What is box breathing?",
|
482 |
-
label="Ask Daily Wellness AI"
|
483 |
-
),
|
484 |
-
gr.Checkbox(
|
485 |
-
label="In-Depth Answer?",
|
486 |
-
value=False,
|
487 |
-
info="Check for a longer, more detailed response."
|
488 |
-
)
|
489 |
-
],
|
490 |
-
outputs=gr.Markdown(label="Answer from Daily Wellness AI"),
|
491 |
-
title="Daily Wellness AI",
|
492 |
-
description="Ask wellness-related questions and receive synthesized, creative answers. Optionally request a more in-depth response.",
|
493 |
-
theme="default",
|
494 |
-
examples=[
|
495 |
-
["What is box breathing and how does it help reduce anxiety?", True],
|
496 |
-
["Provide a daily wellness schedule incorporating box breathing techniques.", False],
|
497 |
-
["What are some tips for maintaining good posture while working at a desk?", True],
|
498 |
-
["Who is the CEO of Hugging Face?", False] # Example of an out-of-context question
|
499 |
-
],
|
500 |
-
allow_flagging="never"
|
501 |
-
)
|
502 |
-
|
503 |
-
###############################################################################
|
504 |
-
# 12) Launch Gradio
|
505 |
-
###############################################################################
|
506 |
-
if __name__ == "__main__":
|
507 |
-
try:
|
508 |
-
# For Hugging Face Spaces, set share=False
|
509 |
-
interface.launch(server_name="0.0.0.0", server_port=7860, debug=False)
|
510 |
-
except Exception as e:
|
511 |
-
logger.error(f"Failed to launch Gradio interface: {e}")
|
512 |
-
logger.debug("Exception details:", exc_info=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
def handle_query(query: str, detail: bool = False) -> str:
|
2 |
"""
|
3 |
Main function to process the query.
|
|
|
43 |
if cached_answer:
|
44 |
blend_prompt = (
|
45 |
f"Combine the following previous answer with the new web results to create a more creative and accurate response. "
|
46 |
+
f"Do not include any of the previous prompt or instructions in your response. "
|
47 |
f"Add positivity and conclude with a short inspirational note.\n\n"
|
48 |
f"Previous Answer:\n{cached_answer}\n\n"
|
49 |
f"Web Results:\n{web_search_response}"
|
|
|
69 |
if cached_answer:
|
70 |
blend_prompt = (
|
71 |
f"Combine the previous answer with the newly retrieved answers to enhance creativity and accuracy. "
|
72 |
+
f"Do not include any of the previous prompt or instructions in your response. "
|
73 |
f"Add new insights, creativity, and conclude with a short inspirational note.\n\n"
|
74 |
f"Previous Answer:\n{cached_answer}\n\n"
|
75 |
f"New Retrieved Answers:\n" + "\n".join(f"- {r}" for r in responses)
|
|
|
87 |
logger.error(f"Error handling query: {e}")
|
88 |
logger.debug("Exception details:", exc_info=True)
|
89 |
return "An error occurred while processing your request."
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|