Updated app.py with multiple feature
Browse files
app.py
CHANGED
@@ -1,214 +1,308 @@
|
|
1 |
-
#
|
2 |
-
# !pip install datasets langchain_community smolagents chardet gradio pandas nltk sklearn
|
3 |
|
4 |
-
# Import required modules
|
5 |
import os
|
6 |
import getpass
|
7 |
import pandas as pd
|
8 |
import chardet
|
9 |
-
import re
|
10 |
-
from langchain.docstore.document import Document
|
11 |
-
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
12 |
-
from langchain_community.retrievers import BM25Retriever
|
13 |
-
from smolagents import CodeAgent, HfApiModel, DuckDuckGoSearchTool , Tool ,LiteLLMModel
|
14 |
-
import gradio as gr
|
15 |
import logging
|
16 |
-
|
17 |
-
|
18 |
-
from
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
|
|
|
20 |
# Set up logging
|
21 |
-
|
|
|
22 |
logger = logging.getLogger("Daily Wellness AI Guru")
|
23 |
|
24 |
-
#
|
25 |
-
|
26 |
-
|
|
|
|
|
|
|
|
|
|
|
27 |
else:
|
28 |
-
print("
|
29 |
-
|
30 |
-
# Load NLTK word list for valid word checks
|
31 |
-
try:
|
32 |
-
english_words = set(words.words())
|
33 |
-
except LookupError:
|
34 |
-
import nltk
|
35 |
-
nltk.download('words')
|
36 |
-
english_words = set(words.words())
|
37 |
-
|
38 |
-
# Define allowed topics for health and wellness
|
39 |
-
ALLOWED_TOPICS = [
|
40 |
-
"mental health",
|
41 |
-
"physical health",
|
42 |
-
"fitness",
|
43 |
-
"nutrition",
|
44 |
-
"exercise",
|
45 |
-
"mindfulness",
|
46 |
-
"sleep",
|
47 |
-
"stress management",
|
48 |
-
"wellness",
|
49 |
-
"relaxation",
|
50 |
-
"healthy lifestyle",
|
51 |
-
"self-care",
|
52 |
-
"meditation",
|
53 |
-
"diet",
|
54 |
-
"hydration",
|
55 |
-
"breathing techniques",
|
56 |
-
"yoga",
|
57 |
-
"stress relief",
|
58 |
-
"emotional health",
|
59 |
-
"spiritual health",
|
60 |
-
"healthy habits"
|
61 |
-
]
|
62 |
-
|
63 |
-
def is_valid_input(query):
|
64 |
-
"""
|
65 |
-
Validate the user's input question.
|
66 |
-
"""
|
67 |
-
if not query or query.strip() == "":
|
68 |
-
return False, "Input cannot be empty. Please provide a meaningful question."
|
69 |
-
|
70 |
-
if len(query.strip()) < 2:
|
71 |
-
return False, "Input is too short. Please provide more context or details."
|
72 |
-
|
73 |
-
# Check for valid words
|
74 |
-
words_in_text = re.findall(r'\b\w+\b', query.lower())
|
75 |
-
recognized_words = [word for word in words_in_text if word in english_words]
|
76 |
-
|
77 |
-
if not recognized_words:
|
78 |
-
return False, "Input appears unclear. Please use valid words in your question."
|
79 |
-
|
80 |
-
return True, "Valid input."
|
81 |
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
"""
|
86 |
-
vectorizer = TfidfVectorizer()
|
87 |
-
tfidf_matrix = vectorizer.fit_transform(corpus + [query])
|
88 |
-
query_vector = tfidf_matrix[-1]
|
89 |
-
similarities = cosine_similarity(query_vector, tfidf_matrix[:-1]).flatten()
|
90 |
-
max_similarity = max(similarities)
|
91 |
-
if max_similarity >= threshold:
|
92 |
-
most_similar_idx = similarities.argmax()
|
93 |
-
return True, corpus[most_similar_idx], max_similarity
|
94 |
-
return False, None, max_similarity
|
95 |
-
|
96 |
-
# Load and process the AIChatbot.csv file
|
97 |
def load_csv(file_path):
|
98 |
"""
|
99 |
-
Load and process a CSV file into
|
100 |
"""
|
101 |
try:
|
|
|
102 |
with open(file_path, 'rb') as f:
|
103 |
result = chardet.detect(f.read())
|
104 |
encoding = result['encoding']
|
|
|
|
|
105 |
data = pd.read_csv(file_path, encoding=encoding)
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
113 |
except Exception as e:
|
114 |
logger.error(f"Error loading CSV file: {e}")
|
115 |
return [], []
|
116 |
|
|
|
117 |
# Load the AIChatbot.csv file
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
130 |
)
|
131 |
-
docs_processed = text_splitter.split_documents(source_docs)
|
132 |
-
logger.info(f"Split documents into {len(docs_processed)} chunks.")
|
133 |
|
134 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
135 |
class RetrieverTool(Tool):
|
136 |
-
name = "
|
137 |
-
description = "Uses semantic search to retrieve the
|
138 |
inputs = {
|
139 |
"query": {
|
140 |
"type": "string",
|
141 |
-
"description": "
|
142 |
}
|
143 |
}
|
144 |
output_type = "string"
|
145 |
|
146 |
-
def __init__(self,
|
147 |
-
super().__init__(
|
148 |
-
self.retriever =
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
if
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
#
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
""
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
180 |
)
|
181 |
|
182 |
-
#
|
|
|
|
|
183 |
def gradio_interface(query):
|
184 |
try:
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
198 |
except Exception as e:
|
199 |
-
logger.error(f"Error
|
200 |
return "**An error occurred while processing your request. Please try again later.**"
|
201 |
|
202 |
-
|
203 |
-
#
|
|
|
204 |
interface = gr.Interface(
|
205 |
fn=gradio_interface,
|
206 |
-
inputs=gr.Textbox(
|
207 |
-
|
|
|
|
|
|
|
208 |
title="Daily Wellness AI Guru Chatbot",
|
209 |
-
description=
|
|
|
|
|
|
|
|
|
210 |
theme="compact"
|
211 |
)
|
212 |
|
|
|
|
|
|
|
|
|
213 |
if __name__ == "__main__":
|
214 |
-
|
|
|
1 |
+
# app.py
|
|
|
2 |
|
|
|
3 |
import os
|
4 |
import getpass
|
5 |
import pandas as pd
|
6 |
import chardet
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
import logging
|
8 |
+
import gradio as gr
|
9 |
+
|
10 |
+
from sentence_transformers import SentenceTransformer, util, CrossEncoder
|
11 |
+
from langchain_community.retrievers import BM25Retriever
|
12 |
+
from smolagents import (
|
13 |
+
CodeAgent,
|
14 |
+
HfApiModel,
|
15 |
+
DuckDuckGoSearchTool,
|
16 |
+
Tool,
|
17 |
+
ManagedAgent,
|
18 |
+
LiteLLMModel
|
19 |
+
)
|
20 |
|
21 |
+
# --------------------------------------------------------------------------------
|
22 |
# Set up logging
|
23 |
+
# --------------------------------------------------------------------------------
|
24 |
+
logging.basicConfig(level=logging.DEBUG)
|
25 |
logger = logging.getLogger("Daily Wellness AI Guru")
|
26 |
|
27 |
+
# --------------------------------------------------------------------------------
|
28 |
+
# Ensure Hugging Face API Token
|
29 |
+
# --------------------------------------------------------------------------------
|
30 |
+
# In a Hugging Face Space, you can set HF_API_TOKEN as a secret variable.
|
31 |
+
# If it's not set, you could prompt for it locally, but in Spaces,
|
32 |
+
# you typically wouldn't do getpass. We'll leave the logic here as fallback.
|
33 |
+
if 'HF_API_TOKEN' not in os.environ or not os.environ['HF_API_TOKEN']:
|
34 |
+
os.environ['HF_API_TOKEN'] = getpass.getpass('Enter your Hugging Face API Token: ')
|
35 |
else:
|
36 |
+
print("HF_API_TOKEN is already set.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
|
38 |
+
# --------------------------------------------------------------------------------
|
39 |
+
# CSV Loading and Processing
|
40 |
+
# --------------------------------------------------------------------------------
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
def load_csv(file_path):
|
42 |
"""
|
43 |
+
Load and process a CSV file into two lists: questions and answers.
|
44 |
"""
|
45 |
try:
|
46 |
+
# Detect the encoding of the file
|
47 |
with open(file_path, 'rb') as f:
|
48 |
result = chardet.detect(f.read())
|
49 |
encoding = result['encoding']
|
50 |
+
|
51 |
+
# Load the CSV using the detected encoding
|
52 |
data = pd.read_csv(file_path, encoding=encoding)
|
53 |
+
|
54 |
+
# Validate that the required columns are present
|
55 |
+
if 'Question' not in data.columns or 'Answers' not in data.columns:
|
56 |
+
raise ValueError("The CSV file must contain 'Question' and 'Answers' columns.")
|
57 |
+
|
58 |
+
# Drop any rows with missing values in 'Question' or 'Answers'
|
59 |
+
data = data.dropna(subset=['Question', 'Answers'])
|
60 |
+
|
61 |
+
# Extract questions and answers
|
62 |
+
questions = data['Question'].tolist()
|
63 |
+
answers = data['Answers'].tolist()
|
64 |
+
|
65 |
+
logger.info(f"Loaded {len(questions)} questions and {len(answers)} answers from {file_path}")
|
66 |
+
return questions, answers
|
67 |
except Exception as e:
|
68 |
logger.error(f"Error loading CSV file: {e}")
|
69 |
return [], []
|
70 |
|
71 |
+
# --------------------------------------------------------------------------------
|
72 |
# Load the AIChatbot.csv file
|
73 |
+
# --------------------------------------------------------------------------------
|
74 |
+
file_path = "AIChatbot.csv" # Ensure this file is in the same directory as app.py
|
75 |
+
corpus_questions, corpus_answers = load_csv(file_path)
|
76 |
+
|
77 |
+
if not corpus_questions:
|
78 |
+
raise ValueError(f"Failed to load questions from {file_path}.")
|
79 |
+
|
80 |
+
# --------------------------------------------------------------------------------
|
81 |
+
# Embedding Model
|
82 |
+
# --------------------------------------------------------------------------------
|
83 |
+
embedding_model_name = "sentence-transformers/multi-qa-mpnet-base-dot-v1"
|
84 |
+
embedding_model = SentenceTransformer(embedding_model_name)
|
85 |
+
logger.info(f"Loaded sentence embedding model: {embedding_model_name}")
|
86 |
+
|
87 |
+
# Encode Questions (for retrieval)
|
88 |
+
question_embeddings = embedding_model.encode(corpus_questions, convert_to_tensor=True)
|
89 |
+
|
90 |
+
# --------------------------------------------------------------------------------
|
91 |
+
# Cross-Encoder for Re-Ranking
|
92 |
+
# --------------------------------------------------------------------------------
|
93 |
+
cross_encoder_model_name = "cross-encoder/ms-marco-MiniLM-L-6-v2"
|
94 |
+
cross_encoder = CrossEncoder(cross_encoder_model_name)
|
95 |
+
logger.info(f"Loaded cross-encoder model: {cross_encoder_model_name}")
|
96 |
+
|
97 |
+
# --------------------------------------------------------------------------------
|
98 |
+
# Retrieval + Re-ranking Class
|
99 |
+
# --------------------------------------------------------------------------------
|
100 |
+
class EmbeddingRetriever:
|
101 |
+
def __init__(self, questions, answers, embeddings, model, cross_encoder):
|
102 |
+
self.questions = questions
|
103 |
+
self.answers = answers
|
104 |
+
self.embeddings = embeddings
|
105 |
+
self.model = model
|
106 |
+
self.cross_encoder = cross_encoder
|
107 |
+
|
108 |
+
def retrieve(self, query, top_k=3):
|
109 |
+
# Compute query embedding
|
110 |
+
query_embedding = self.model.encode(query, convert_to_tensor=True)
|
111 |
+
scores = util.pytorch_cos_sim(query_embedding, self.embeddings)[0].cpu().tolist()
|
112 |
+
|
113 |
+
# Combine data
|
114 |
+
scored_data = list(zip(self.questions, self.answers, scores))
|
115 |
+
# Sort by best scores
|
116 |
+
scored_data = sorted(scored_data, key=lambda x: x[2], reverse=True)
|
117 |
+
# Take top_k
|
118 |
+
top_candidates = scored_data[:top_k]
|
119 |
+
|
120 |
+
# Cross-encode re-rank
|
121 |
+
cross_inputs = [[query, candidate[0]] for candidate in top_candidates]
|
122 |
+
cross_scores = self.cross_encoder.predict(cross_inputs)
|
123 |
+
|
124 |
+
reranked = sorted(
|
125 |
+
zip(top_candidates, cross_scores),
|
126 |
+
key=lambda x: x[1],
|
127 |
+
reverse=True
|
128 |
+
)
|
129 |
+
|
130 |
+
# The best candidate
|
131 |
+
best_candidate = reranked[0][0] # (question, answer, score)
|
132 |
+
best_answer = best_candidate[1]
|
133 |
+
return best_answer
|
134 |
+
|
135 |
+
retriever = EmbeddingRetriever(
|
136 |
+
questions=corpus_questions,
|
137 |
+
answers=corpus_answers,
|
138 |
+
embeddings=question_embeddings,
|
139 |
+
model=embedding_model,
|
140 |
+
cross_encoder=cross_encoder
|
141 |
)
|
|
|
|
|
142 |
|
143 |
+
# --------------------------------------------------------------------------------
|
144 |
+
# Simple Answer Expander (Without custom sampling parameters)
|
145 |
+
# --------------------------------------------------------------------------------
|
146 |
+
class AnswerExpander:
|
147 |
+
def __init__(self, model: HfApiModel):
|
148 |
+
self.model = model
|
149 |
+
|
150 |
+
def expand(self, question: str, short_answer: str) -> str:
|
151 |
+
"""
|
152 |
+
Prompt the LLM to provide a more creative, brand-aligned answer.
|
153 |
+
"""
|
154 |
+
prompt = (
|
155 |
+
"You are Daily Wellness AI, a friendly and creative wellness expert. "
|
156 |
+
"The user has a question about well-being. Provide an encouraging, day-to-day "
|
157 |
+
"wellness perspective. Be gentle, uplifting, and brand-aligned.\n\n"
|
158 |
+
f"Question: {question}\n"
|
159 |
+
f"Current short answer: {short_answer}\n\n"
|
160 |
+
"Please rephrase and expand with more detail, wellness tips, daily-life "
|
161 |
+
"applications, and an optimistic tone. Keep it informal, friendly, and end "
|
162 |
+
"with a short inspirational note.\n"
|
163 |
+
)
|
164 |
+
try:
|
165 |
+
expanded_answer = self.model.run(prompt)
|
166 |
+
return expanded_answer.strip()
|
167 |
+
except Exception as e:
|
168 |
+
logger.error(f"Failed to expand answer: {e}")
|
169 |
+
return short_answer
|
170 |
+
|
171 |
+
# NOTE: We are using a basic HfApiModel here (no custom sampling).
|
172 |
+
expander_model = HfApiModel()
|
173 |
+
answer_expander = AnswerExpander(expander_model)
|
174 |
+
|
175 |
+
# --------------------------------------------------------------------------------
|
176 |
+
# Enhanced Retriever Tool
|
177 |
+
# --------------------------------------------------------------------------------
|
178 |
+
from smolagents import Tool
|
179 |
+
|
180 |
class RetrieverTool(Tool):
|
181 |
+
name = "retriever_tool"
|
182 |
+
description = "Uses semantic search + cross-encoder re-ranking to retrieve the best answer."
|
183 |
inputs = {
|
184 |
"query": {
|
185 |
"type": "string",
|
186 |
+
"description": "User query for retrieving relevant information.",
|
187 |
}
|
188 |
}
|
189 |
output_type = "string"
|
190 |
|
191 |
+
def __init__(self, retriever, expander):
|
192 |
+
super().__init__()
|
193 |
+
self.retriever = retriever
|
194 |
+
self.expander = expander
|
195 |
+
|
196 |
+
def forward(self, query):
|
197 |
+
best_answer = self.retriever.retrieve(query, top_k=3)
|
198 |
+
if best_answer:
|
199 |
+
# If short, expand it
|
200 |
+
if len(best_answer.strip()) < 80:
|
201 |
+
logger.info("Answer is short. Expanding with LLM.")
|
202 |
+
best_answer = self.expander.expand(query, best_answer)
|
203 |
+
return best_answer
|
204 |
+
return "No relevant information found."
|
205 |
+
|
206 |
+
retriever_tool = RetrieverTool(retriever, answer_expander)
|
207 |
+
|
208 |
+
# --------------------------------------------------------------------------------
|
209 |
+
# DuckDuckGo (Web) Fallback
|
210 |
+
# --------------------------------------------------------------------------------
|
211 |
+
search_tool = DuckDuckGoSearchTool()
|
212 |
+
|
213 |
+
# --------------------------------------------------------------------------------
|
214 |
+
# Managed Agents
|
215 |
+
# --------------------------------------------------------------------------------
|
216 |
+
from smolagents import ManagedAgent, CodeAgent, LiteLLMModel
|
217 |
+
|
218 |
+
retriever_agent = ManagedAgent(
|
219 |
+
agent=CodeAgent(tools=[retriever_tool], model=LiteLLMModel("groq/llama3-8b-8192")),
|
220 |
+
name="retriever_agent",
|
221 |
+
description="Retrieves answers from the local knowledge base (CSV file)."
|
222 |
+
)
|
223 |
+
|
224 |
+
web_agent = ManagedAgent(
|
225 |
+
agent=CodeAgent(tools=[search_tool], model=HfApiModel()),
|
226 |
+
name="web_search_agent",
|
227 |
+
description="Performs web searches if the local knowledge base doesn't have an answer."
|
228 |
+
)
|
229 |
+
|
230 |
+
# --------------------------------------------------------------------------------
|
231 |
+
# Manager Agent to Orchestrate
|
232 |
+
# --------------------------------------------------------------------------------
|
233 |
+
manager_agent = CodeAgent(
|
234 |
+
tools=[],
|
235 |
+
model=HfApiModel(),
|
236 |
+
managed_agents=[retriever_agent, web_agent],
|
237 |
+
verbose=True
|
238 |
)
|
239 |
|
240 |
+
# --------------------------------------------------------------------------------
|
241 |
+
# Gradio Interface
|
242 |
+
# --------------------------------------------------------------------------------
|
243 |
def gradio_interface(query):
|
244 |
try:
|
245 |
+
logger.info(f"User query: {query}")
|
246 |
+
|
247 |
+
# 1) Query local knowledge base
|
248 |
+
retriever_response = retriever_tool.forward(query)
|
249 |
+
if retriever_response != "No relevant information found.":
|
250 |
+
logger.info("Provided answer from local DB (possibly expanded).")
|
251 |
+
return (
|
252 |
+
f"Hello! This is **Daily Wellness AI**.\n\n"
|
253 |
+
f"{retriever_response}\n\n"
|
254 |
+
"Disclaimer: This is general wellness information, "
|
255 |
+
"not a substitute for professional medical advice.\n\n"
|
256 |
+
"Wishing you a calm and wonderful day!"
|
257 |
+
)
|
258 |
+
|
259 |
+
# 2) Fallback to Web if no relevant local info
|
260 |
+
logger.info("Falling back to web search.")
|
261 |
+
web_response = web_agent.run(query)
|
262 |
+
if web_response:
|
263 |
+
logger.info("Response retrieved from the web.")
|
264 |
+
return (
|
265 |
+
f"Hello! This is **Daily Wellness AI**.\n\n"
|
266 |
+
f"{web_response.strip()}\n\n"
|
267 |
+
"Disclaimer: This is general wellness information, "
|
268 |
+
"not a substitute for professional medical advice.\n\n"
|
269 |
+
"Wishing you a calm and wonderful day!"
|
270 |
+
)
|
271 |
+
|
272 |
+
# 3) Default fallback
|
273 |
+
logger.info("No response found from any source.")
|
274 |
+
return (
|
275 |
+
"Hello! This is **Daily Wellness AI**.\n\n"
|
276 |
+
"I'm sorry, I couldn't find an answer to your question. "
|
277 |
+
"Please try rephrasing or ask something else.\n\n"
|
278 |
+
"Take care, and have a wonderful day!"
|
279 |
+
)
|
280 |
except Exception as e:
|
281 |
+
logger.error(f"Error processing query: {e}")
|
282 |
return "**An error occurred while processing your request. Please try again later.**"
|
283 |
|
284 |
+
# --------------------------------------------------------------------------------
|
285 |
+
# Launch Gradio App
|
286 |
+
# --------------------------------------------------------------------------------
|
287 |
interface = gr.Interface(
|
288 |
fn=gradio_interface,
|
289 |
+
inputs=gr.Textbox(
|
290 |
+
label="Ask Daily Wellness AI",
|
291 |
+
placeholder="e.g., What is box breathing?"
|
292 |
+
),
|
293 |
+
outputs=gr.Markdown(label="Answer from Daily Wellness AI"),
|
294 |
title="Daily Wellness AI Guru Chatbot",
|
295 |
+
description=(
|
296 |
+
"Ask wellness-related questions to get detailed, creative answers from "
|
297 |
+
"our knowledge base—expanded by an LLM if needed—or from the web. "
|
298 |
+
"We aim to bring calm and positivity to your day."
|
299 |
+
),
|
300 |
theme="compact"
|
301 |
)
|
302 |
|
303 |
+
def main():
|
304 |
+
interface.launch(server_name="0.0.0.0", server_port=7860, debug=True)
|
305 |
+
|
306 |
+
# If running in a local environment, we can also just call main()
|
307 |
if __name__ == "__main__":
|
308 |
+
main()
|