# app.py import os import pandas as pd import chardet import logging import gradio as gr from typing import Optional, List, Tuple, ClassVar, Dict from sentence_transformers import SentenceTransformer, util, CrossEncoder from langchain.llms.base import LLM import google.generativeai as genai ############################################################################### # 1) Logging Setup ############################################################################### logging.basicConfig(level=logging.INFO) logger = logging.getLogger("Daily Wellness AI") ############################################################################### # 2) API Key Handling and Enhanced GeminiLLM Class ############################################################################### def clean_api_key(key: str) -> str: """Remove non-ASCII characters and strip whitespace from the API key.""" return ''.join(c for c in key if ord(c) < 128).strip() # Load the GEMINI API key from environment variables gemini_api_key = os.environ.get("GEMINI_API_KEY") if not gemini_api_key: logger.error("GEMINI_API_KEY environment variable not set.") raise EnvironmentError("Please set the GEMINI_API_KEY environment variable.") gemini_api_key = clean_api_key(gemini_api_key) logger.info("GEMINI API Key loaded successfully.") # Configure Google Generative AI try: genai.configure(api_key=gemini_api_key) logger.info("Configured Google Generative AI with provided API key.") except Exception as e: logger.error(f"Failed to configure Google Generative AI: {e}") raise e class GeminiLLM(LLM): model_name: ClassVar[str] = "gemini-2.0-flash-exp" temperature: float = 0.7 top_p: float = 0.95 top_k: int = 40 max_tokens: int = 2048 @property def _llm_type(self) -> str: return "custom_gemini" def _call(self, prompt: str, stop: Optional[List[str]] = None) -> str: generation_config = { "temperature": self.temperature, "top_p": self.top_p, "top_k": self.top_k, "max_output_tokens": self.max_tokens, } try: logger.debug(f"Initializing GenerativeModel with config: {generation_config}") model = genai.GenerativeModel( model_name=self.model_name, generation_config=generation_config, ) logger.debug("GenerativeModel initialized successfully.") chat_session = model.start_chat(history=[]) logger.debug("Chat session started.") response = chat_session.send_message(prompt) logger.debug(f"Prompt sent to model: {prompt}") logger.debug(f"Raw response received: {response.text}") return response.text except Exception as e: logger.error(f"Error generating response with GeminiLLM: {e}") logger.debug("Exception details:", exc_info=True) raise e # Instantiate the GeminiLLM globally llm = GeminiLLM() ############################################################################### # 3) CSV Loading and Processing ############################################################################### def load_csv(file_path: str): try: if not os.path.isfile(file_path): logger.error(f"CSV file does not exist: {file_path}") return [], [] with open(file_path, 'rb') as f: result = chardet.detect(f.read()) encoding = result['encoding'] data = pd.read_csv(file_path, encoding=encoding) if 'Question' not in data.columns or 'Answers' not in data.columns: raise ValueError("CSV must contain 'Question' and 'Answers' columns.") data = data.dropna(subset=['Question', 'Answers']) logger.info(f"Loaded {len(data)} entries from {file_path}") return data['Question'].tolist(), data['Answers'].tolist() except Exception as e: logger.error(f"Error loading CSV: {e}") return [], [] # Path to your CSV file (ensure 'AIChatbot.csv' is in the repository) csv_file_path = "AIChatbot.csv" corpus_questions, corpus_answers = load_csv(csv_file_path) if not corpus_questions: raise ValueError("Failed to load the knowledge base.") ############################################################################### # 4) Sentence Embeddings & Cross-Encoder ############################################################################### embedding_model_name = "sentence-transformers/multi-qa-mpnet-base-dot-v1" try: embedding_model = SentenceTransformer(embedding_model_name) logger.info(f"Loaded embedding model: {embedding_model_name}") except Exception as e: logger.error(f"Failed to load embedding model: {e}") raise e try: question_embeddings = embedding_model.encode(corpus_questions, convert_to_tensor=True) logger.info("Encoded question embeddings successfully.") except Exception as e: logger.error(f"Failed to encode question embeddings: {e}") raise e cross_encoder_name = "cross-encoder/ms-marco-MiniLM-L-6-v2" try: cross_encoder = CrossEncoder(cross_encoder_name) logger.info(f"Loaded cross-encoder model: {cross_encoder_name}") except Exception as e: logger.error(f"Failed to load cross-encoder model: {e}") raise e ############################################################################### # 5) Retrieval + Re-Ranking ############################################################################### class EmbeddingRetriever: def __init__(self, questions, answers, embeddings, model, cross_encoder): self.questions = questions self.answers = answers self.embeddings = embeddings self.model = model self.cross_encoder = cross_encoder def retrieve(self, query: str, top_k: int = 3): try: query_embedding = self.model.encode(query, convert_to_tensor=True) scores = util.pytorch_cos_sim(query_embedding, self.embeddings)[0].cpu().tolist() scored_data = sorted(zip(self.questions, self.answers, scores), key=lambda x: x[2], reverse=True)[:top_k] cross_inputs = [[query, candidate[0]] for candidate in scored_data] cross_scores = self.cross_encoder.predict(cross_inputs) reranked = sorted(zip(scored_data, cross_scores), key=lambda x: x[1], reverse=True) final_retrieved = [(entry[0][1], entry[1]) for entry in reranked] logger.debug(f"Retrieved and reranked answers: {final_retrieved}") return final_retrieved except Exception as e: logger.error(f"Error during retrieval: {e}") logger.debug("Exception details:", exc_info=True) return [] retriever = EmbeddingRetriever(corpus_questions, corpus_answers, question_embeddings, embedding_model, cross_encoder) ############################################################################### # 6) Answer Expansion ############################################################################### class AnswerExpander: def __init__(self, llm: GeminiLLM): self.llm = llm def expand(self, query: str, retrieved_answers: List[str]) -> str: try: reference_block = "\n".join(f"- {idx+1}) {ans}" for idx, ans in enumerate(retrieved_answers, start=1)) prompt = ( f"You are Daily Wellness AI, a friendly wellness expert. Below are multiple " f"potential answers retrieved from a local knowledge base. You have a user question.\n\n" f"Question: {query}\n\n" f"Retrieved Answers:\n{reference_block}\n\n" "Please synthesize these references into a single cohesive, creative, " "and brand-aligned response. Add practical tips and positivity, and end " "with a short inspirational note.\n\n" "Disclaimer: This is general wellness information, not a substitute for professional medical advice." ) logger.debug(f"Generated prompt for answer expansion: {prompt}") response = self.llm._call(prompt) logger.debug(f"Expanded answer: {response}") return response.strip() except Exception as e: logger.error(f"Error expanding answer: {e}") logger.debug("Exception details:", exc_info=True) return "Sorry, an error occurred while generating a response." answer_expander = AnswerExpander(llm) ############################################################################### # 7) Query Handling ############################################################################### def handle_query(query: str) -> str: if not query or not isinstance(query, str) or len(query.strip()) == 0: return "Please provide a valid question." try: retrieved = retriever.retrieve(query) if not retrieved: return "I'm sorry, I couldn't find an answer to your question." responses = [ans[0] for ans in retrieved] expanded_answer = answer_expander.expand(query, responses) return expanded_answer except Exception as e: logger.error(f"Error handling query: {e}") logger.debug("Exception details:", exc_info=True) return "An error occurred while processing your request." ############################################################################### # 8) Gradio Interface ############################################################################### def gradio_interface(query: str): try: response = handle_query(query) formatted_response = ( f"**Daily Wellness AI**\n\n" f"{response}\n\n" "Disclaimer: This is general wellness information, " "not a substitute for professional medical advice.\n\n" "Wishing you a calm and wonderful day!" ) return formatted_response except Exception as e: logger.error(f"Error in Gradio interface: {e}") logger.debug("Exception details:", exc_info=True) return "**An error occurred while processing your request. Please try again later.**" interface = gr.Interface( fn=gradio_interface, inputs=gr.Textbox( lines=2, placeholder="e.g., What is box breathing?", label="Ask Daily Wellness AI" ), outputs=gr.Markdown(label="Answer from Daily Wellness AI"), title="Daily Wellness AI", description="Ask wellness-related questions and receive synthesized, creative answers.", theme="default", examples=[ "What is box breathing and how does it help reduce anxiety?", "Provide a daily wellness schedule incorporating box breathing techniques.", "What are some tips for maintaining good posture while working at a desk?" ], allow_flagging="never" ) ############################################################################### # 9) Launch Gradio ############################################################################### if __name__ == "__main__": try: # For Hugging Face Spaces, set share=False interface.launch(server_name="0.0.0.0", server_port=7860, debug=False) except Exception as e: logger.error(f"Failed to launch Gradio interface: {e}") logger.debug("Exception details:", exc_info=True)