PhoenixDecim commited on
Commit
92ae1b2
·
1 Parent(s): 99d87fa

Initial Commit

Browse files
Files changed (3) hide show
  1. app.py +491 -0
  2. data_filters.py +84 -0
  3. requirements.txt +12 -0
app.py ADDED
@@ -0,0 +1,491 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """SLM with RAG for financial statements"""
2
+
3
+ # Importing the dependencies
4
+ import logging
5
+ import os
6
+ import subprocess
7
+ import time
8
+ import re
9
+ import pickle
10
+ import numpy as np
11
+ import pandas as pd
12
+ import torch
13
+ import spacy
14
+ import pdfplumber
15
+ from transformers import AutoModelForCausalLM, AutoTokenizer
16
+ import gradio as gr
17
+ import faiss
18
+ from rank_bm25 import BM25Okapi
19
+ from sentence_transformers import SentenceTransformer, CrossEncoder
20
+ from data_filters import (
21
+ restricted_patterns,
22
+ restricted_topics,
23
+ FINANCIAL_DATA_PATTERNS,
24
+ sensitive_terms,
25
+ FINANCIAL_TERMS,
26
+ )
27
+
28
+ # Initialize logger
29
+ logging.basicConfig(
30
+ # filename="app.log",
31
+ level=logging.INFO,
32
+ format="%(asctime)s - %(levelname)s - %(message)s",
33
+ )
34
+ logger = logging.getLogger()
35
+ os.makedirs("data", exist_ok=True)
36
+
37
+ # SLM: Microsoft PHI-2 model is loaded
38
+ # It does have higher memory and compute requirements compared to TinyLlama and Falcon
39
+ # But it gives the best results among the three
40
+ DEVICE = "cpu" # or cuda
41
+ # MODEL_NAME = "TinyLlama/TinyLlama_v1.1"
42
+ # MODEL_NAME = "tiiuae/falcon-rw-1b"
43
+ MODEL_NAME = "microsoft/phi-2"
44
+ # MODEL_NAME = "google/gemma-3-1b-pt"
45
+ # Load the Tokenizer for PHI-2
46
+ tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, trust_remote_code=True)
47
+ MAX_TOKENS = tokenizer.model_max_length
48
+ CONTEXT_MULTIPLIER = 0.7
49
+ # The max_context tokens is used to limit the retrieved chunks during querying
50
+ # to provide some headroom for the query
51
+ MAX_CONTEXT_TOKENS = int(MAX_TOKENS * CONTEXT_MULTIPLIER)
52
+ if tokenizer.pad_token is None:
53
+ tokenizer.pad_token = tokenizer.eos_token
54
+ # Since the model is to be hosted on a cpu instance, we use float32
55
+ # For GPU, we can use float16 or bfloat16
56
+ model = AutoModelForCausalLM.from_pretrained(
57
+ MODEL_NAME, torch_dtype=torch.float32, trust_remote_code=True
58
+ ).to(DEVICE)
59
+ model.eval()
60
+ # model = torch.quantization.quantize_dynamic(model, {torch.nn.Linear}, dtype=torch.qint8)
61
+ logger.info("Model loaded successfully.")
62
+ # Load Sentence Transformer for Embeddings and Cross Encoder for re-ranking
63
+ embed_model = SentenceTransformer("sentence-transformers/all-MiniLM-L6-v2")
64
+ cross_encoder = CrossEncoder("cross-encoder/ms-marco-MiniLM-L6-v2")
65
+ # Load spaCy English model for Named Entity Recognition (mainly for guardrail)
66
+ try:
67
+ nlp = spacy.load("en_core_web_sm")
68
+ except OSError:
69
+ subprocess.run(["python", "-m", "spacy", "download", "en_core_web_sm"])
70
+ nlp = spacy.load("en_core_web_sm")
71
+
72
+
73
+ # Extract the yaer from the upload file's name if any
74
+ def extract_year_from_filename(filename):
75
+ """Extract Year from Filename"""
76
+ match = re.search(r"(\d{4})-(\d{4})", filename)
77
+ if match:
78
+ return match.group(1)
79
+ match = re.search(r"(\d{4})", filename)
80
+ return match.group(1) if match else "Unknown"
81
+
82
+
83
+ # Use PDFPlumber to extract the tables from the uploaded file
84
+ # Add the year column for context and create a dataframe
85
+ def extract_tables_from_pdf(pdf_path):
86
+ """Extract tables from PDF into a DataFrame"""
87
+ all_tables = []
88
+ report_year = extract_year_from_filename(pdf_path)
89
+ with pdfplumber.open(pdf_path) as pdf:
90
+ for page_num, page in enumerate(pdf.pages, start=1):
91
+ tables = page.extract_tables()
92
+ for table in tables:
93
+ df = pd.DataFrame(table)
94
+ df["year"] = report_year
95
+ all_tables.append(df)
96
+ return pd.concat(all_tables, ignore_index=True) if all_tables else pd.DataFrame()
97
+
98
+
99
+ # Load the csv files directly using pandas into a dataframe
100
+ def load_csv(file_path):
101
+ """Loads a CSV file into a DataFrame"""
102
+ try:
103
+ df = pd.read_csv(file_path)
104
+ df["year"] = extract_year_from_filename(file_path)
105
+ return df
106
+ except Exception as e:
107
+ print(f"Error loading CSV: {e}")
108
+ return None
109
+
110
+
111
+ # Preprocess the dataframe - Replace null values and create text rows suitable for chunking
112
+ def clean_dataframe_text(df):
113
+ """Clean and format PDF/CSV data"""
114
+ df.fillna("", inplace=True)
115
+ text_data = []
116
+ for _, row in df.iterrows():
117
+ parts = []
118
+ if "year" in df.columns:
119
+ parts.append(f"Year: {row['year']}")
120
+ parts.extend([str(val).strip() for val in row if str(val).strip()])
121
+ text_data.append(", ".join(parts))
122
+ df["text"] = text_data
123
+ return df[["text"]].replace("", np.nan).dropna()
124
+
125
+
126
+ # Chunk the text for retrival
127
+ # Different chunk sizes - 256,512,1024,2048 were tried and 512 worked the best for financial RAG
128
+ def chunk_text(text, chunk_size=512):
129
+ """Apply Chunking on the text"""
130
+ words = text.split()
131
+ chunks, temp_chunk = [], []
132
+ for word in words:
133
+ if sum(len(w) for w in temp_chunk) + len(temp_chunk) + len(word) <= chunk_size:
134
+ temp_chunk.append(word)
135
+ else:
136
+ chunks.append(" ".join(temp_chunk))
137
+ temp_chunk = [word]
138
+ if temp_chunk:
139
+ chunks.append(" ".join(temp_chunk))
140
+ return chunks
141
+
142
+
143
+ # Uses regex to identify financial terms and ensure relevant data is only merged
144
+ def is_financial_text(text):
145
+ """Detects financial data"""
146
+ return bool(
147
+ re.search(
148
+ FINANCIAL_DATA_PATTERNS,
149
+ text,
150
+ re.IGNORECASE,
151
+ )
152
+ )
153
+
154
+
155
+ # Uses a sentence transformer "all-MiniLM-L6-v2" to embed text chunks
156
+ # Stores embeddings in a FAISS vector database for similarity search
157
+ # BM25 is implemented alongside FAISS to improve retrieval
158
+ # Use FAISS Cosine Similarity index and merge only highly similar text chunks (>85%)
159
+ def merge_similar_chunks(chunks, similarity_threshold=0.85):
160
+ """Merge similar chunks while preserving financial data structure"""
161
+ if not chunks:
162
+ return []
163
+ # Encode chunks into embeddings
164
+ embeddings = np.array(
165
+ embed_model.encode(chunks, normalize_embeddings=True), dtype="float32"
166
+ )
167
+ # FAISS Cosine Similarity Index
168
+ index = faiss.IndexFlatIP(embeddings.shape[1])
169
+ index.add(embeddings)
170
+ # Get top-2 most similar chunks
171
+ _, indices = index.search(embeddings, 2)
172
+ merged_chunks = {}
173
+ for i, idx in enumerate(indices[:, 1]):
174
+ if i in merged_chunks or idx in merged_chunks:
175
+ continue
176
+ sim_score = np.dot(embeddings[i], embeddings[idx])
177
+ # Ensure financial data isn't incorrectly merged
178
+ if is_financial_text(chunks[i]) or is_financial_text(chunks[idx]):
179
+ merged_chunks[i] = chunks[i]
180
+ merged_chunks[idx] = chunks[idx]
181
+ continue
182
+ # Merge only if similarity is high and chunks are adjacent
183
+ if sim_score > similarity_threshold and abs(i - idx) == 1:
184
+ merged_chunks[i] = chunks[i] + " " + chunks[idx]
185
+ merged_chunks[idx] = merged_chunks[i]
186
+ else:
187
+ merged_chunks[i] = chunks[i]
188
+ return list(set(merged_chunks.values()))
189
+
190
+
191
+ # Handle for file upload button in UI
192
+ # Processes the uploaded files and generates the embeddings
193
+ # The FAISS embeddings and tokenized chunks are saved for retrieval
194
+ def process_files(files, chunk_size=512):
195
+ """Process uploaded files and generate embeddings"""
196
+ if not files:
197
+ logger.warning("No files uploaded!")
198
+ return "Please upload at least one PDF or CSV file."
199
+ pdf_paths = [file.name for file in files if file.name.endswith(".pdf")]
200
+ csv_paths = [file.name for file in files if file.name.endswith(".csv")]
201
+ logger.info(f"Processing {len(pdf_paths)} PDFs and {len(csv_paths)} CSVs")
202
+ df_list = []
203
+ if pdf_paths:
204
+ df_list.extend([extract_tables_from_pdf(pdf) for pdf in pdf_paths])
205
+ for csv in csv_paths:
206
+ df = load_csv(csv)
207
+ df_list.append(df)
208
+ if not df_list:
209
+ logger.warning("No valid data found in the uploaded files")
210
+ return "No valid data found in the uploaded files"
211
+ df = pd.concat(df_list, ignore_index=True)
212
+ df.dropna(how="all", inplace=True)
213
+ logger.info("Data extracted from the files")
214
+ df_cleaned = clean_dataframe_text(df)
215
+ df_cleaned["chunks"] = df_cleaned["text"].apply(lambda x: chunk_text(x, chunk_size))
216
+ df_chunks = df_cleaned.explode("chunks").reset_index(drop=True)
217
+ merged_chunks = merge_similar_chunks(df_chunks["chunks"].tolist())
218
+ chunk_texts = merged_chunks
219
+ # chunk_texts = df_chunks["chunks"].tolist()
220
+ embeddings = np.array(
221
+ embed_model.encode(chunk_texts, normalize_embeddings=True), dtype="float32"
222
+ )
223
+ # Save FAISS index
224
+ index = faiss.IndexFlatL2(embeddings.shape[1])
225
+ index.add(embeddings)
226
+ faiss.write_index(index, "data/faiss_index.bin")
227
+ logger.info("FAISS index created and saved.")
228
+ # Save BM25 index
229
+ tokenized_chunks = [text.lower().split() for text in chunk_texts]
230
+ bm25_data = {"tokenized_chunks": tokenized_chunks, "chunk_texts": chunk_texts}
231
+ logger.info("BM25 index created and saved.")
232
+ with open("data/bm25_data.pkl", "wb") as f:
233
+ pickle.dump(bm25_data, f)
234
+ return "Files processed successfully! You can now query."
235
+
236
+
237
+ # Input guardrail implementation
238
+ # Regex is used to filter queries related to sensitive topics
239
+ # Uses spaCy model's Named Entity Recognition to filter queries for personal details
240
+ # Uses cosine similarity with the embedded query and sensitive topic vectors
241
+ # to filter out queries violating confidential/security rules (additional)
242
+ def is_query_allowed(query):
243
+ """Checks if the query violates security or confidentiality rules"""
244
+ for pattern in restricted_patterns:
245
+ if re.search(pattern, query, re.IGNORECASE):
246
+ return False, "This query requests sensitive or confidential information."
247
+ doc = nlp(query)
248
+ for ent in doc.ents:
249
+ if ent.label_ == "PERSON":
250
+ for token in ent.subtree:
251
+ if token.text.lower() in sensitive_terms:
252
+ return (
253
+ False,
254
+ "Query contains personal salary information, which is restricted.",
255
+ )
256
+ query_embedding = embed_model.encode(query, normalize_embeddings=True)
257
+ topic_embeddings = embed_model.encode(
258
+ list(restricted_topics), normalize_embeddings=True
259
+ )
260
+ similarities = np.dot(topic_embeddings, query_embedding)
261
+ if np.max(similarities) > 0.85:
262
+ return False, "This query requests sensitive or confidential information."
263
+ return True, None
264
+
265
+
266
+ # Boosts the scores for texts containing financial terms
267
+ # This is useful during re-ranking
268
+ def boost_score(text, base_score, boost_factor=1.2):
269
+ """Boost scores if the text contains financial terms"""
270
+ if any(term in text.lower() for term in FINANCIAL_TERMS):
271
+ return base_score * boost_factor
272
+ return base_score
273
+
274
+
275
+ # FAISS embeddings are used to retrieve semantically similar chunks
276
+ # BM25 is used to retrieve relevant chunks based on the keywords (TF-IDF)
277
+ # FAISS and BM25 complement each other- similar matches and important exact matches
278
+ # The retrieved chunks are merged and sorted based on a lambda FAISS value
279
+ # if lambda FAISS is 0.6, weightage for retrieved FAISS chunks are 0.6 and 0.4 for BM25 chunks
280
+ # Cross encoder model ms-marco-MiniLM-L6-v2 is used for scoring and re-ranking the chunks
281
+ def hybrid_retrieve(query, chunk_texts, index, bm25, top_k=5, lambda_faiss=0.7):
282
+ """Hybrid Retrieval with FAISS, BM25, Cross-Encoder & Financial Term Boosting"""
283
+ # FAISS Retrieval
284
+ query_embedding = np.array(
285
+ [embed_model.encode(query, normalize_embeddings=True)], dtype="float32"
286
+ )
287
+ _, faiss_indices = index.search(query_embedding, top_k)
288
+ faiss_results = [chunk_texts[idx] for idx in faiss_indices[0]]
289
+ # BM25 Retrieval
290
+ tokenized_query = query.lower().split()
291
+ bm25_scores = bm25.get_scores(tokenized_query)
292
+ bm25_top_indices = np.argsort(bm25_scores)[::-1][:top_k]
293
+ bm25_results = [chunk_texts[idx] for idx in bm25_top_indices]
294
+ # Merge FAISS & BM25 Scores
295
+ results = {}
296
+ for entry in faiss_results:
297
+ results[entry] = boost_score(entry, lambda_faiss)
298
+ for entry in bm25_results:
299
+ results[entry] = results.get(entry, 0) + boost_score(entry, (1 - lambda_faiss))
300
+ # Rank initial results
301
+ retrieved_docs = sorted(results.items(), key=lambda x: x[1], reverse=True)
302
+ retrieved_texts = [r[0] for r in retrieved_docs]
303
+ # Cross-Encoder Re-Ranking
304
+ query_text_pairs = [[query, text] for text in retrieved_texts]
305
+ scores = cross_encoder.predict(query_text_pairs)
306
+ ranked_indices = np.argsort(scores)[::-1]
307
+ # Return top-ranked results
308
+ final_results = [retrieved_texts[i] for i in ranked_indices[:top_k]]
309
+ return final_results
310
+
311
+
312
+ # A confidence score is computed using FAISS and BM25 ranking
313
+ # FAISS: The similarity score between the query (with response) and the retrieved chunks are normalized
314
+ # BM25: The BM25 scores for the query is normalized
315
+ # Both the scores are aggregated using a weighted sum (lambda FAISS) and normalized
316
+ def compute_confidence_score(query, retrieved_chunks, bm25, lambda_faiss):
317
+ """Calculates a confidence score using FAISS and BM25 rankings."""
318
+ if not retrieved_chunks:
319
+ return 0
320
+ query_embedding = embed_model.encode(query, normalize_embeddings=True)
321
+ response_embedding = embed_model.encode(
322
+ " ".join(retrieved_chunks), normalize_embeddings=True
323
+ )
324
+ # FAISS Similarity
325
+ faiss_score = np.dot(query_embedding, response_embedding)
326
+ normalized_faiss = (faiss_score + 1) / 2
327
+ # BM25 Ranking
328
+ tokenized_query = query.lower().split()
329
+ bm25_scores = bm25.get_scores(tokenized_query)
330
+ if bm25_scores.size > 0:
331
+ min_bm25 = (
332
+ np.min(bm25_scores) if np.min(bm25_scores) != np.max(bm25_scores) else 0
333
+ )
334
+ max_bm25 = (
335
+ np.max(bm25_scores) if np.min(bm25_scores) != np.max(bm25_scores) else 1
336
+ )
337
+ bm25_score = (
338
+ np.mean([bm25_scores[idx] for idx in range(len(retrieved_chunks))])
339
+ if len(retrieved_chunks) > 0
340
+ else 0
341
+ )
342
+ normalized_bm25 = (bm25_score - min_bm25) / (max_bm25 - min_bm25)
343
+ normalized_bm25 = max(0, min(1, normalized_bm25))
344
+ else:
345
+ normalized_bm25 = 0
346
+ # Final Confidence Score (use Lambda FAISS value for weighted sum)
347
+ confidence_score = round(
348
+ (normalized_faiss * lambda_faiss + normalized_bm25 * (1 - lambda_faiss)), 2
349
+ )
350
+ return confidence_score
351
+
352
+
353
+ # UI handle for query model button
354
+ # Loads the saved FAISS embeddings and tokenized chunks for BM25
355
+ # Check the query for any policy violation
356
+ # Retrieve similar texts using the RAG implementation
357
+ # Prompt the loaded SLM along with the retrieved texts and compute confidence score
358
+ def query_model(
359
+ query,
360
+ top_k=10,
361
+ lambda_faiss=0.5,
362
+ repetition_penalty=1.5,
363
+ max_new_tokens=100,
364
+ use_extraction=False,
365
+ ):
366
+ """Query function"""
367
+ start_time = time.perf_counter()
368
+ # Check if FAISS and BM25 indexes exist
369
+ if not os.path.exists("data/faiss_index.bin") or not os.path.exists(
370
+ "data/bm25_data.pkl"
371
+ ):
372
+ logger.error("No index found! Prompting user to upload PDFs.")
373
+ return (
374
+ "Index files not found! Please upload PDFs first to generate embeddings.",
375
+ "Error",
376
+ )
377
+ allowed, reason = is_query_allowed(query)
378
+ if not allowed:
379
+ logger.error(f"Query Rejected: {reason}")
380
+ return f"Query Rejected: {reason}", "Warning"
381
+ logger.info(
382
+ f"Received query: {query} | Top-K: {top_k}, "
383
+ f"Lambda: {lambda_faiss}, Tokens: {max_new_tokens}"
384
+ )
385
+ # Load FAISS & BM25 Indexes
386
+ index = faiss.read_index("data/faiss_index.bin")
387
+ with open("data/bm25_data.pkl", "rb") as f:
388
+ bm25_data = pickle.load(f)
389
+ # Restore tokenized chunks and metadata
390
+ tokenized_chunks = bm25_data["tokenized_chunks"]
391
+ chunk_texts = bm25_data["chunk_texts"]
392
+ bm25 = BM25Okapi(tokenized_chunks)
393
+ retrieved_chunks = hybrid_retrieve(
394
+ query, chunk_texts, index, bm25, top_k=top_k, lambda_faiss=lambda_faiss
395
+ )
396
+ logger.info("Retrieved chunks")
397
+ context = ""
398
+ token_count = 0
399
+ # context = "\n".join(retrieved_chunks)
400
+ for chunk in retrieved_chunks:
401
+ chunk_tokens = tokenizer(chunk, return_tensors="pt")["input_ids"].shape[1]
402
+ if token_count + chunk_tokens < MAX_CONTEXT_TOKENS:
403
+ context += chunk + "\n"
404
+ token_count += chunk_tokens
405
+ else:
406
+ break
407
+ prompt = (
408
+ f"Based on the following information:\n\n{context}\n\n"
409
+ "Answer the query in one or two sentences. "
410
+ "Do not provide follow-ups. "
411
+ f"Answer the query: {query}"
412
+ )
413
+ inputs = tokenizer(prompt, return_tensors="pt", padding=True).to(DEVICE)
414
+ inputs.pop("token_type_ids", None)
415
+ logger.info("Generating output")
416
+ input_len = inputs["input_ids"].shape[-1]
417
+ with torch.inference_mode():
418
+ output = model.generate(
419
+ **inputs,
420
+ max_new_tokens=max_new_tokens,
421
+ num_return_sequences=1,
422
+ repetition_penalty=repetition_penalty,
423
+ pad_token_id=tokenizer.eos_token_id,
424
+ )
425
+ start_len = 0
426
+ if use_extraction:
427
+ start_len = input_len
428
+ output = output[0][start_len:]
429
+ execution_time = time.perf_counter() - start_time
430
+ logger.info(f"Query processed in {execution_time:.2f} seconds.")
431
+ response = tokenizer.decode(output, skip_special_tokens=True)
432
+ confidence_score = compute_confidence_score(
433
+ query + " " + response, retrieved_chunks, bm25, lambda_faiss
434
+ )
435
+ logger.info(f"Confidence: {confidence_score*100}%")
436
+ if confidence_score <= 0.3:
437
+ logger.error(f"The system is unsure about this response.")
438
+ response += "\nThe system is unsure about this response."
439
+ return (
440
+ response,
441
+ f"Confidence: {confidence_score*100}%\nTime taken: {execution_time:.2f} seconds",
442
+ )
443
+
444
+
445
+ # Gradio UI
446
+ with gr.Blocks(title="Financial Statement RAG with LLM") as ui:
447
+ gr.Markdown("## Financial Statement RAG with LLM")
448
+ # File upload section
449
+ with gr.Group():
450
+ gr.Markdown("### Upload & Process Annual Reports")
451
+ file_input = gr.File(
452
+ file_count="multiple",
453
+ file_types=[".pdf", ".csv"],
454
+ type="filepath",
455
+ label="Upload Annual Reports (PDFs/CSVs)",
456
+ )
457
+ process_button = gr.Button("Process Files")
458
+ process_output = gr.Textbox(label="Processing Status", interactive=False)
459
+ # Query model section
460
+ with gr.Group():
461
+ gr.Markdown("### Ask a Financial Query")
462
+ query_input = gr.Textbox(label="Enter Query")
463
+ with gr.Row():
464
+ top_k_input = gr.Number(value=15, label="Top K (Default: 15)")
465
+ lambda_faiss_input = gr.Slider(0, 1, value=0.5, label="Lambda FAISS (0-1)")
466
+ repetition_penalty = gr.Slider(
467
+ 1, 2, value=1.0, label="Repetition Penality (1-2)"
468
+ )
469
+ max_tokens_input = gr.Number(value=100, label="Max New Tokens")
470
+ use_extraction = gr.Checkbox(label="Retrieve only the answer", value=False)
471
+ query_button = gr.Button("Submit Query")
472
+ query_output = gr.Textbox(label="Query Response", interactive=False)
473
+ time_output = gr.Textbox(label="Time Taken", interactive=False)
474
+ # Button Actions
475
+ process_button.click(process_files, inputs=[file_input], outputs=process_output)
476
+ query_button.click(
477
+ query_model,
478
+ inputs=[
479
+ query_input,
480
+ top_k_input,
481
+ lambda_faiss_input,
482
+ repetition_penalty,
483
+ max_tokens_input,
484
+ use_extraction,
485
+ ],
486
+ outputs=[query_output, time_output],
487
+ )
488
+ # Application entry point
489
+ if __name__ == "__main__":
490
+ logger.info("Starting Gradio server...")
491
+ ui.launch(server_name="0.0.0.0", server_port=7860, pwa=True)
data_filters.py ADDED
@@ -0,0 +1,84 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Sensitive data filters"""
2
+
3
+ restricted_patterns = [
4
+ r"\b(?:CFO|CEO|CTO|executive|director|manager|employee|staff|worker)\b.*\b(?:salary|compensation|bonus|pay|income)\b",
5
+ r"\b(?:salary|compensation|bonus|pay|income)\b.*\b(?:CFO|CEO|CTO|executive|director|manager|employee|staff|worker)\b",
6
+ r"\b(?:acquisition|merger|buyout)\b.*\b(?:before|pre-announcement|leak|inside information)\b",
7
+ r"\b(?:before|pre-announcement|leak|inside information)\b.*\b(?:acquisition|merger|buyout)\b",
8
+ r"\b(?:stock price|share price|insider trading|buying shares)\b",
9
+ r"\b(?:internal policy|data breach|security protocol|confidential|classified)\b",
10
+ r"\b(?:password|access credentials|encryption key|secure key)\b",
11
+ r"\b(?:social security number|SSN|passport number|credit card|bank account|tax ID|TIN|personal details)\b",
12
+ r"\b(?:employee records|payroll|medical records|HR data|salary data|PII|personally identifiable information)\b",
13
+ r"\b(?:CFO|CEO|CTO|executive|director|manager|employee|staff|worker)\b.*\b(?:address|work location|home location|residence|personal contact|phone number|email|office location)\b",
14
+ ]
15
+
16
+ restricted_topics = {
17
+ "CEO salary",
18
+ "CFO salary",
19
+ "executive pay",
20
+ "stock options",
21
+ "compensation details",
22
+ "classified financial data",
23
+ "insider trading",
24
+ "password",
25
+ "login credentials",
26
+ "HR complaints",
27
+ "remuneration",
28
+ "director salary",
29
+ "financial package",
30
+ }
31
+
32
+ sensitive_terms = {
33
+ "salary",
34
+ "compensation",
35
+ "income",
36
+ "pay",
37
+ "bonus",
38
+ "earnings",
39
+ "wages",
40
+ }
41
+
42
+
43
+ FINANCIAL_DATA_PATTERNS = (
44
+ r"\b(\₹?\s?\d{1,3}(?:,\d{2,3})*(?:\.\d+)?\s*(million|billion|crore|lakh|%)"
45
+ r"?|Rs\.?\s?\d{1,3}(?:,\d{2,3})*(?:\.\d+)?)\b"
46
+ )
47
+
48
+ FINANCIAL_TERMS = {
49
+ "income",
50
+ "revenue",
51
+ "profit",
52
+ "dividend",
53
+ "investment",
54
+ "earnings",
55
+ "turnover",
56
+ "expenses",
57
+ "assets",
58
+ "liabilities",
59
+ "capital",
60
+ "cash",
61
+ "EBITDA",
62
+ "margin",
63
+ "tax",
64
+ "costs",
65
+ "reserves",
66
+ "equity",
67
+ "debt",
68
+ "interest",
69
+ "valuation",
70
+ "amortization",
71
+ "depreciation",
72
+ "returns",
73
+ "funds",
74
+ "shares",
75
+ "stock",
76
+ "pricing",
77
+ "liquidity",
78
+ "credit",
79
+ "bond",
80
+ "expense",
81
+ "budget",
82
+ "yield",
83
+ "growth",
84
+ }
requirements.txt ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ numpy
2
+ pandas
3
+ matplotlib
4
+ torch
5
+ transformers
6
+ sentence_transformers
7
+ spacy
8
+ faiss-cpu
9
+ pdfplumber
10
+ rank_bm25
11
+ fastapi
12
+ gradio