Spaces:
Running
Running
Add saved models and requirements
Browse files- KC.pkl +3 -0
- KC/saved_model.pb +3 -0
- KC/variables/variables.data-00000-of-00001 +0 -0
- KC/variables/variables.index +0 -0
- Specificity.pkl +3 -0
- Specificity/saved_model.pb +3 -0
- Specificity/variables/variables.data-00000-of-00001 +0 -0
- Specificity/variables/variables.index +0 -0
- app.py +171 -0
- kcatC.pkl +3 -0
- kcatC/saved_model.pb +3 -0
- kcatC/variables/variables.data-00000-of-00001 +0 -0
- kcatC/variables/variables.index +0 -0
- requirements.txt +7 -0
KC.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9985473ee19c6be7ba5777b12bc1babe60746298345e64e0426ab54f8e8e92d0
|
3 |
+
size 188721
|
KC/saved_model.pb
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3c35ad708d8b793c7d4b9867ee4225445cd9c2648a3589067a7814da7a660f28
|
3 |
+
size 1209629
|
KC/variables/variables.data-00000-of-00001
ADDED
Binary file (676 Bytes). View file
|
|
KC/variables/variables.index
ADDED
Binary file (387 Bytes). View file
|
|
Specificity.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1c7508f5fec50afa81a43d85917b947b367f20da122c6fc9635d6cd202bc0b51
|
3 |
+
size 271953
|
Specificity/saved_model.pb
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8bef26d451689448d1469d1865bf91b9f342c9258d059dbc8deff006690a3189
|
3 |
+
size 2207910
|
Specificity/variables/variables.data-00000-of-00001
ADDED
Binary file (676 Bytes). View file
|
|
Specificity/variables/variables.index
ADDED
Binary file (387 Bytes). View file
|
|
app.py
ADDED
@@ -0,0 +1,171 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import joblib
|
3 |
+
from concurrent.futures import ThreadPoolExecutor
|
4 |
+
from transformers import AutoTokenizer, AutoModel, EsmModel
|
5 |
+
import torch
|
6 |
+
import numpy as np
|
7 |
+
import random
|
8 |
+
import tensorflow as tf
|
9 |
+
import os
|
10 |
+
from keras.layers import TFSMLayer
|
11 |
+
import pandas as pd
|
12 |
+
|
13 |
+
base_dir = "."
|
14 |
+
|
15 |
+
# Set random seed
|
16 |
+
SEED = 42
|
17 |
+
np.random.seed(SEED)
|
18 |
+
random.seed(SEED)
|
19 |
+
torch.manual_seed(SEED)
|
20 |
+
if torch.cuda.is_available():
|
21 |
+
torch.cuda.manual_seed(SEED)
|
22 |
+
torch.cuda.manual_seed_all(SEED)
|
23 |
+
|
24 |
+
# Ensure deterministic behavior
|
25 |
+
torch.backends.cudnn.deterministic = True
|
26 |
+
torch.backends.cudnn.benchmark = False
|
27 |
+
|
28 |
+
|
29 |
+
def load_model(model_path):
|
30 |
+
print(f"Loading model from {model_path}...")
|
31 |
+
return tf.saved_model.load(model_path)
|
32 |
+
|
33 |
+
|
34 |
+
print("Loading models...")
|
35 |
+
plant_models = {
|
36 |
+
"Specificity": {"model": joblib.load("Specificity.pkl"), "esm_model": "facebook/esm1b_t33_650M_UR50S", "layer": 6},
|
37 |
+
"kcatC": {"model": joblib.load("kcatC.pkl"), "esm_model": "facebook/esm2_t36_3B_UR50D", "layer": 11},
|
38 |
+
"KC": {"model": joblib.load("KC.pkl"), "esm_model": "facebook/esm1b_t33_650M_UR50S", "layer": 4},
|
39 |
+
}
|
40 |
+
|
41 |
+
general_models = {
|
42 |
+
"Specificity": {"model": load_model(f"Specificity"), "esm_model": "facebook/esm2_t33_650M_UR50D", "layer": 33},
|
43 |
+
"kcatC": {"model": load_model(f"kcatC"), "esm_model": "facebook/esm2_t12_35M_UR50D", "layer": 7},
|
44 |
+
"KC": {"model": load_model(f"KC"), "esm_model": "facebook/esm2_t30_150M_UR50D", "layer": 26},
|
45 |
+
}
|
46 |
+
|
47 |
+
|
48 |
+
# Function to generate embeddings
|
49 |
+
def get_embedding(sequence, esm_model_name, layer):
|
50 |
+
print(f"Generating embeddings using {esm_model_name}, Layer {layer}...")
|
51 |
+
tokenizer = AutoTokenizer.from_pretrained(esm_model_name)
|
52 |
+
model = EsmModel.from_pretrained(esm_model_name, output_hidden_states=True)
|
53 |
+
|
54 |
+
# Tokenize the sequence
|
55 |
+
inputs = tokenizer(sequence, return_tensors="pt", truncation=True, max_length=1024)
|
56 |
+
|
57 |
+
# Generate embeddings
|
58 |
+
with torch.no_grad():
|
59 |
+
outputs = model(**inputs)
|
60 |
+
hidden_states = outputs.hidden_states # Retrieve all hidden states
|
61 |
+
embedding = hidden_states[layer].mean(dim=1).numpy() # Average pooling
|
62 |
+
|
63 |
+
# Convert to DataFrame with named columns
|
64 |
+
feature_columns = {f"D{i+1}": embedding[0, i] for i in range(embedding.shape[1])}
|
65 |
+
embedding_df = pd.DataFrame([feature_columns])
|
66 |
+
print (embedding_df)
|
67 |
+
return embedding_df.values, embedding_df
|
68 |
+
|
69 |
+
|
70 |
+
def predict_with_gpflow(model, X):
|
71 |
+
print(model.signatures)
|
72 |
+
# Convert input to TensorFlow tensor
|
73 |
+
X_tensor = tf.convert_to_tensor(X, dtype=tf.float64)
|
74 |
+
print (X_tensor.shape)
|
75 |
+
# Get predictions
|
76 |
+
#predict_fn = model.predict_f_compiled
|
77 |
+
predict_fn = model.signatures["serving_default"]
|
78 |
+
result = predict_fn(Xnew=X_tensor) # Pass Xnew explicitly
|
79 |
+
#mean, variance = predict_fn(Xnew=X_tensor)
|
80 |
+
mean = result["output_0"].numpy() # Adjust output key names if needed
|
81 |
+
variance = result["output_1"].numpy()
|
82 |
+
|
83 |
+
# Return mean and variance as numpy arrays
|
84 |
+
#return mean.numpy().flatten(), variance.numpy().flatten()
|
85 |
+
return mean.flatten(), variance.flatten()
|
86 |
+
|
87 |
+
|
88 |
+
|
89 |
+
def process_target(target, selected_models, sequence, prediction_type):
|
90 |
+
"""
|
91 |
+
Process a single target for prediction using transformer embeddings and the specified model.
|
92 |
+
"""
|
93 |
+
# Get model and embedding details
|
94 |
+
esm_model_name = selected_models[target]["esm_model"]
|
95 |
+
layer = selected_models[target]["layer"]
|
96 |
+
model = selected_models[target]["model"]
|
97 |
+
|
98 |
+
# Generate embeddings in the required format
|
99 |
+
embedding, _ = get_embedding(sequence, esm_model_name, layer)
|
100 |
+
embedding = embedding.astype(np.float64)
|
101 |
+
np.save(f"hf_embedding_{target}.npy", embedding)
|
102 |
+
if prediction_type == "Plant-Specific":
|
103 |
+
# Random Forest prediction
|
104 |
+
y_pred = model.predict(embedding)[0]
|
105 |
+
return target, round(y_pred, 2)
|
106 |
+
else:
|
107 |
+
# GPflow prediction
|
108 |
+
print (esm_model_name)
|
109 |
+
print (layer)
|
110 |
+
print (model)
|
111 |
+
y_pred, y_uncertainty = predict_with_gpflow(model, embedding)
|
112 |
+
return target, round(y_pred[0], 2), round(y_uncertainty[0], 2)
|
113 |
+
|
114 |
+
|
115 |
+
def predict(sequence, prediction_type):
|
116 |
+
"""
|
117 |
+
Predicts Specificity, kcatC, and KC for the given sequence and prediction type.
|
118 |
+
"""
|
119 |
+
# Select the appropriate model set
|
120 |
+
selected_models = plant_models if prediction_type == "Plant-Specific" else general_models
|
121 |
+
|
122 |
+
# Predict for all targets in parallel
|
123 |
+
with ThreadPoolExecutor() as executor:
|
124 |
+
results = list(
|
125 |
+
executor.map(
|
126 |
+
lambda target: process_target(target, selected_models, sequence, prediction_type),
|
127 |
+
selected_models.keys()
|
128 |
+
)
|
129 |
+
)
|
130 |
+
|
131 |
+
# Format results
|
132 |
+
if prediction_type == "Plant-Specific":
|
133 |
+
formatted_results = [
|
134 |
+
["Specificity", results[0][1]],
|
135 |
+
["kcat\u1d9c", results[1][1]],
|
136 |
+
["K\u1d9c", results[2][1]],
|
137 |
+
]
|
138 |
+
else:
|
139 |
+
formatted_results = [
|
140 |
+
["Specificity", results[0][1], results[0][2]],
|
141 |
+
["kcat\u1d9c", results[1][1], results[1][2]],
|
142 |
+
["K\u1d9c", results[2][1], results[2][2]],
|
143 |
+
]
|
144 |
+
|
145 |
+
return formatted_results
|
146 |
+
|
147 |
+
|
148 |
+
# Define Gradio interface
|
149 |
+
print("Creating Gradio interface...")
|
150 |
+
interface = gr.Interface(
|
151 |
+
fn=predict,
|
152 |
+
inputs=[
|
153 |
+
gr.Textbox(label="Input Protein Sequence",
|
154 |
+
value="MSPQTETKASVGFKAGVKEYKLTYYTPEYETKDTDILAAFRVTPQPGVPPEEAGAAVAAESSTGTWTTVWTDGLTSLDRYKGRCYHIEPVPGEETQFIAYVAYPLDLFEEGSVTNMFTSIVGNVFGFKALAALRLEDLRIPPAYTKTFQGPPHGIQVERDKLNKYGRPLLGCTIKPKLGLSAKNYGRAVYECLRGGLDFTKDDENVNSQPFMRWRDRFLFCAEAIYKSQAETGEIKGHYLNATAGTCEEMIKRAVFARELGVPIVMHDYLTGGFTANTSLSHYCRDNGLLLHIHRAMHAVIDRQKNHGMHFRVLAKALRLSGGDHIHAGTVVGKLEGDRESTLGFVDLLRDDYVEKDRSRGIFFTQDWVSLPGVLPVASGGIHVWHMPALTEIFGDDSVLQFGGGTLGHPWGNAPGAVANRVALEACVQARNEGRDLAVEGNEIIREACKWSPELAAACEVWKEITFNFPTIDKLDGQE",
|
155 |
+
lines=10,
|
156 |
+
), # Input: Text box for sequence
|
157 |
+
gr.Radio(choices=["Plant-Specific", "General"], label="Prediction Type", value="Plant-Specific"), # Dropdown for selection
|
158 |
+
],
|
159 |
+
outputs=gr.Dataframe(
|
160 |
+
headers=["Target", "Prediction", "Uncertainty (for General)"],
|
161 |
+
type="array"
|
162 |
+
), # Output: Table
|
163 |
+
title="Rubisco Kinetics Prediction",
|
164 |
+
description=(
|
165 |
+
"Enter a protein sequence to predict Rubisco kinetics properties (Specificity, kcat\u1d9c, and K\u1d9c). "
|
166 |
+
"Choose between 'Plant-Specific' (Random Forest) or 'General' (GPflow) predictions."
|
167 |
+
),
|
168 |
+
)
|
169 |
+
|
170 |
+
if __name__ == "__main__":
|
171 |
+
interface.launch()
|
kcatC.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:33e1131e59808c8c23f910502730c40569f71946322fbc6f6c9f0236c11a8c6a
|
3 |
+
size 181809
|
kcatC/saved_model.pb
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1a3fedc1e7fc41a15fa41e5fa04efe015fcadd2395e1ac07da60fb5328a8a401
|
3 |
+
size 1003709
|
kcatC/variables/variables.data-00000-of-00001
ADDED
Binary file (676 Bytes). View file
|
|
kcatC/variables/variables.index
ADDED
Binary file (387 Bytes). View file
|
|
requirements.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
transformers
|
2 |
+
torch
|
3 |
+
gradio
|
4 |
+
joblib
|
5 |
+
numpy
|
6 |
+
scikit-learn
|
7 |
+
gpflow
|