Pie31415 commited on
Commit
71e9a42
·
1 Parent(s): f5e4df7

gigant merge

Browse files
__assets__/run.gif ADDED
__assets__/run.mp4 ADDED
Binary file (13.2 kB). View file
 
__assets__/walk_01.gif ADDED
__assets__/walk_01.mp4 ADDED
Binary file (33.2 kB). View file
 
__assets__/walk_02.gif ADDED
__assets__/walk_02.mp4 ADDED
Binary file (47.6 kB). View file
 
__assets__/walk_03.gif ADDED
__assets__/walk_03.mp4 ADDED
Binary file (43.2 kB). View file
 
__assets__/walk_04.gif ADDED
__assets__/walk_04.mp4 ADDED
Binary file (64.9 kB). View file
 
app.py CHANGED
@@ -11,7 +11,7 @@ import jax.numpy as jnp
11
  huggingspace_name = os.environ.get("SPACE_AUTHOR_NAME")
12
  on_huggingspace = huggingspace_name if huggingspace_name is not None else False
13
 
14
- model = ControlAnimationModel(device="cuda", dtype=jnp.float16)
15
 
16
  parser = argparse.ArgumentParser()
17
  parser.add_argument(
 
11
  huggingspace_name = os.environ.get("SPACE_AUTHOR_NAME")
12
  on_huggingspace = huggingspace_name if huggingspace_name is not None else False
13
 
14
+ model = ControlAnimationModel(dtype=jnp.float16)
15
 
16
  parser = argparse.ArgumentParser()
17
  parser.add_argument(
text_to_animation/model.py CHANGED
@@ -19,10 +19,10 @@ from diffusers import (
19
  FlaxAutoencoderKL,
20
  FlaxStableDiffusionControlNetPipeline,
21
  StableDiffusionPipeline,
22
- FlaxUNet2DConditionModel,
23
  )
24
  from text_to_animation.models.unet_2d_condition_flax import (
25
- FlaxUNet2DConditionModel as CustomFlaxUNet2DConditionModel,
26
  )
27
  from diffusers import FlaxControlNetModel
28
 
@@ -82,10 +82,10 @@ class ControlAnimationModel:
82
  feature_extractor = CLIPFeatureExtractor.from_pretrained(
83
  model_id, subfolder="feature_extractor"
84
  )
85
- unet, unet_params = CustomFlaxUNet2DConditionModel.from_pretrained(
86
  model_id, subfolder="unet", from_pt=True, dtype=self.dtype
87
  )
88
- unet_vanilla, _ = FlaxUNet2DConditionModel.from_pretrained(
89
  model_id, subfolder="unet", from_pt=True, dtype=self.dtype
90
  )
91
  vae, vae_params = FlaxAutoencoderKL.from_pretrained(
@@ -141,8 +141,9 @@ class ControlAnimationModel:
141
 
142
  seeds = [seed for seed in jax.random.randint(self.rng, [num_imgs], 0, 65536)]
143
  prngs = [jax.random.PRNGKey(seed) for seed in seeds]
 
144
  images = self.pipe.generate_starting_frames(
145
- params=self.params,
146
  prngs=prngs,
147
  controlnet_image=control,
148
  prompt=prompts,
@@ -153,30 +154,66 @@ class ControlAnimationModel:
153
 
154
  return images
155
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
156
  def generate_animation(
157
  self,
158
- prompt: str,
159
- initial_frame_index: int,
160
- input_video_path: str,
161
- model_link: str = "dreamlike-art/dreamlike-photoreal-2.0",
162
- motion_field_strength_x: int = 12,
163
- motion_field_strength_y: int = 12,
164
- t0: int = 44,
165
- t1: int = 47,
166
- n_prompt: str = "",
167
- chunk_size: int = 8,
168
- video_length: int = 8,
169
- merging_ratio: float = 0.0,
170
- seed: int = 0,
171
- resolution: int = 512,
172
- fps: int = 2,
173
- use_cf_attn: bool = True,
174
- use_motion_field: bool = True,
175
- smooth_bg: bool = False,
176
- smooth_bg_strength: float = 0.4,
177
- path: str = None,
178
  ):
179
- video_path = gradio_utils.motion_to_video_path(video_path)
180
 
181
  # added_prompt = 'best quality, HD, clay stop-motion, claymation, HQ, masterpiece, art, smooth'
182
  # added_prompt = 'high quality, anatomically correct, clay stop-motion, aardman, claymation, smooth'
@@ -187,18 +224,26 @@ class ControlAnimationModel:
187
  video_path, resolution, None, self.dtype, False, output_fps=4
188
  )
189
  control = utils.pre_process_pose(video, apply_pose_detect=False)
190
- f, _, h, w = video.shape
191
-
192
  prng_seed = jax.random.PRNGKey(seed)
193
- vid = self.pipe.generate_video(
194
- prompt,
195
- image=control,
196
- params=self.params,
197
- prng_seed=prng_seed,
198
- neg_prompt="",
199
- controlnet_conditioning_scale=1.0,
200
- motion_field_strength_x=3,
201
- motion_field_strength_y=4,
202
- jit=True,
203
- ).image
 
 
 
 
 
 
 
 
 
204
  return utils.create_gif(np.array(vid), 4, path=None, watermark=None)
 
19
  FlaxAutoencoderKL,
20
  FlaxStableDiffusionControlNetPipeline,
21
  StableDiffusionPipeline,
22
+ FlaxUNet2DConditionModel as VanillaFlaxUNet2DConditionModel,
23
  )
24
  from text_to_animation.models.unet_2d_condition_flax import (
25
+ FlaxUNet2DConditionModel
26
  )
27
  from diffusers import FlaxControlNetModel
28
 
 
82
  feature_extractor = CLIPFeatureExtractor.from_pretrained(
83
  model_id, subfolder="feature_extractor"
84
  )
85
+ unet, unet_params = FlaxUNet2DConditionModel.from_pretrained(
86
  model_id, subfolder="unet", from_pt=True, dtype=self.dtype
87
  )
88
+ unet_vanilla = VanillaFlaxUNet2DConditionModel.from_config(
89
  model_id, subfolder="unet", from_pt=True, dtype=self.dtype
90
  )
91
  vae, vae_params = FlaxAutoencoderKL.from_pretrained(
 
141
 
142
  seeds = [seed for seed in jax.random.randint(self.rng, [num_imgs], 0, 65536)]
143
  prngs = [jax.random.PRNGKey(seed) for seed in seeds]
144
+ print(seeds)
145
  images = self.pipe.generate_starting_frames(
146
+ params=self.p_params,
147
  prngs=prngs,
148
  controlnet_image=control,
149
  prompt=prompts,
 
154
 
155
  return images
156
 
157
+ def generate_video_from_frame(self, controlnet_video, prompt, seed, neg_prompt=""):
158
+ # generate a video using the seed provided
159
+ prng_seed = jax.random.PRNGKey(seed)
160
+ len_vid = controlnet_video.shape[0]
161
+ # print(f"Generating video from prompt {'<aardman> style '+ prompt}, with {controlnet_video.shape[0]} frames and prng seed {seed}")
162
+ added_prompt = "high quality, best quality, HD, clay stop-motion, claymation, HQ, masterpiece, art, smooth"
163
+ prompts = added_prompt + ", " + prompt
164
+
165
+ added_n_prompt = "longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer difits, cropped, worst quality, low quality, deformed body, bloated, ugly"
166
+ negative_prompts = added_n_prompt + ", " + neg_prompt
167
+
168
+ # prompt_ids = self.pipe.prepare_text_inputs(["aardman style "+ prompt]*len_vid)
169
+ # n_prompt_ids = self.pipe.prepare_text_inputs([neg_prompt]*len_vid)
170
+
171
+ prompt_ids = self.pipe.prepare_text_inputs([prompts]*len_vid)
172
+ n_prompt_ids = self.pipe.prepare_text_inputs([negative_prompts]*len_vid)
173
+ prng = replicate_devices(prng_seed) #jax.random.split(prng, jax.device_count())
174
+ image = replicate_devices(controlnet_video)
175
+ prompt_ids = replicate_devices(prompt_ids)
176
+ n_prompt_ids = replicate_devices(n_prompt_ids)
177
+ motion_field_strength_x = replicate_devices(jnp.array(3))
178
+ motion_field_strength_y = replicate_devices(jnp.array(4))
179
+ smooth_bg_strength = replicate_devices(jnp.array(0.8))
180
+ vid = (self.pipe(image=image,
181
+ prompt_ids=prompt_ids,
182
+ neg_prompt_ids=n_prompt_ids,
183
+ params=self.p_params,
184
+ prng_seed=prng,
185
+ jit = True,
186
+ smooth_bg_strength=smooth_bg_strength,
187
+ motion_field_strength_x=motion_field_strength_x,
188
+ motion_field_strength_y=motion_field_strength_y,
189
+ ).images)[0]
190
+ return utils.create_gif(np.array(vid), 4, path=None, watermark=None)
191
+
192
+
193
  def generate_animation(
194
  self,
195
+ prompt, #: str,
196
+ initial_frame_index, #: int,
197
+ input_video_path, #: str,
198
+ model_link = None,#: str = "dreamlike-art/dreamlike-photoreal-2.0",
199
+ motion_field_strength_x = 12,#: int = 12,
200
+ motion_field_strength_y= 12,#: int = 12,
201
+ t0= 44,#: int = 44,
202
+ t1= 47,#: int = 47,
203
+ n_prompt= "",#: str = "",
204
+ chunk_size= 8, #: int = 8,
205
+ video_length = 8, #: int = 8,
206
+ merging_ratio = 0., #: float = 0.0,
207
+ seed= 0,#: int = 0,
208
+ resolution=512,#: int = 512,
209
+ fps=2,#: int = 2,
210
+ use_cf_attn=True,#: bool = True,
211
+ use_motion_field=True,#: bool = True,
212
+ smooth_bg=False,#: bool = False,
213
+ smooth_bg_strength=0.4,#: float = 0.4,
214
+ path=None,#: str = None,
215
  ):
216
+ video_path = gradio_utils.motion_to_video_path(input_video_path)
217
 
218
  # added_prompt = 'best quality, HD, clay stop-motion, claymation, HQ, masterpiece, art, smooth'
219
  # added_prompt = 'high quality, anatomically correct, clay stop-motion, aardman, claymation, smooth'
 
224
  video_path, resolution, None, self.dtype, False, output_fps=4
225
  )
226
  control = utils.pre_process_pose(video, apply_pose_detect=False)
227
+ len_vid, _, h, w = video.shape
 
228
  prng_seed = jax.random.PRNGKey(seed)
229
+ prompts = prompt
230
+ prompt_ids = self.pipe.prepare_text_inputs([prompts]*len_vid)
231
+ n_prompt_ids = self.pipe.prepare_text_inputs([negative_prompts]*len_vid)
232
+ prng = replicate_devices(prng_seed) #jax.random.split(prng, jax.device_count())
233
+ image = replicate_devices(control)
234
+ prompt_ids = replicate_devices(prompt_ids)
235
+ n_prompt_ids = replicate_devices(n_prompt_ids)
236
+ motion_field_strength_x = replicate_devices(jnp.array(motion_field_strength_x))
237
+ motion_field_strength_y = replicate_devices(jnp.array(motion_field_strength_y))
238
+ smooth_bg_strength = replicate_devices(jnp.array(smooth_bg_strength))
239
+ vid = (self.pipe(image=image,
240
+ prompt_ids=prompt_ids,
241
+ neg_prompt_ids=n_prompt_ids,
242
+ params=self.p_params,
243
+ prng_seed=prng,
244
+ jit = True,
245
+ smooth_bg_strength=smooth_bg_strength,
246
+ motion_field_strength_x=motion_field_strength_x,
247
+ motion_field_strength_y=motion_field_strength_y,
248
+ ).images)[0]
249
  return utils.create_gif(np.array(vid), 4, path=None, watermark=None)
text_to_animation/models/controlnet_flax.py CHANGED
@@ -23,12 +23,10 @@ from diffusers.configuration_utils import ConfigMixin, flax_register_to_config
23
  from diffusers.utils import BaseOutput
24
  from diffusers.models.embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps
25
  from diffusers.models.modeling_flax_utils import FlaxModelMixin
26
- from diffusers.models.unet_2d_blocks_flax import (
27
  FlaxCrossAttnDownBlock2D,
28
- FlaxCrossAttnUpBlock2D,
29
  FlaxDownBlock2D,
30
- FlaxUNetMidBlock2DCrossAttn,
31
- FlaxUpBlock2D,
32
  )
33
 
34
 
@@ -171,18 +169,14 @@ class FlaxControlNetModel(nn.Module, FlaxModelMixin, ConfigMixin):
171
  sample_shape = (1, self.in_channels, self.sample_size, self.sample_size)
172
  sample = jnp.zeros(sample_shape, dtype=jnp.float32)
173
  timesteps = jnp.ones((1,), dtype=jnp.int32)
174
- encoder_hidden_states = jnp.zeros(
175
- (1, 1, self.cross_attention_dim), dtype=jnp.float32
176
- )
177
  controlnet_cond_shape = (1, 3, self.sample_size * 8, self.sample_size * 8)
178
  controlnet_cond = jnp.zeros(controlnet_cond_shape, dtype=jnp.float32)
179
 
180
  params_rng, dropout_rng = jax.random.split(rng)
181
  rngs = {"params": params_rng, "dropout": dropout_rng}
182
 
183
- return self.init(
184
- rngs, sample, timesteps, encoder_hidden_states, controlnet_cond
185
- )["params"]
186
 
187
  def setup(self):
188
  block_out_channels = self.block_out_channels
@@ -199,9 +193,7 @@ class FlaxControlNetModel(nn.Module, FlaxModelMixin, ConfigMixin):
199
 
200
  # time
201
  self.time_proj = FlaxTimesteps(
202
- block_out_channels[0],
203
- flip_sin_to_cos=self.flip_sin_to_cos,
204
- freq_shift=self.config.freq_shift,
205
  )
206
  self.time_embedding = FlaxTimestepEmbedding(time_embed_dim, dtype=self.dtype)
207
 
@@ -290,7 +282,7 @@ class FlaxControlNetModel(nn.Module, FlaxModelMixin, ConfigMixin):
290
 
291
  # mid
292
  mid_block_channel = block_out_channels[-1]
293
- self.mid_block = FlaxUNetMidBlock2DCrossAttn(
294
  in_channels=mid_block_channel,
295
  dropout=self.dropout,
296
  attn_num_head_channels=attention_head_dim[-1],
@@ -361,23 +353,17 @@ class FlaxControlNetModel(nn.Module, FlaxModelMixin, ConfigMixin):
361
  down_block_res_samples = (sample,)
362
  for down_block in self.down_blocks:
363
  if isinstance(down_block, FlaxCrossAttnDownBlock2D):
364
- sample, res_samples = down_block(
365
- sample, t_emb, encoder_hidden_states, deterministic=not train
366
- )
367
  else:
368
  sample, res_samples = down_block(sample, t_emb, deterministic=not train)
369
  down_block_res_samples += res_samples
370
 
371
  # 4. mid
372
- sample = self.mid_block(
373
- sample, t_emb, encoder_hidden_states, deterministic=not train
374
- )
375
 
376
  # 5. contronet blocks
377
  controlnet_down_block_res_samples = ()
378
- for down_block_res_sample, controlnet_block in zip(
379
- down_block_res_samples, self.controlnet_down_blocks
380
- ):
381
  down_block_res_sample = controlnet_block(down_block_res_sample)
382
  controlnet_down_block_res_samples += (down_block_res_sample,)
383
 
@@ -386,15 +372,12 @@ class FlaxControlNetModel(nn.Module, FlaxModelMixin, ConfigMixin):
386
  mid_block_res_sample = self.controlnet_mid_block(sample)
387
 
388
  # 6. scaling
389
- down_block_res_samples = [
390
- sample * conditioning_scale for sample in down_block_res_samples
391
- ]
392
  mid_block_res_sample *= conditioning_scale
393
 
394
  if not return_dict:
395
  return (down_block_res_samples, mid_block_res_sample)
396
 
397
  return FlaxControlNetOutput(
398
- down_block_res_samples=down_block_res_samples,
399
- mid_block_res_sample=mid_block_res_sample,
400
- )
 
23
  from diffusers.utils import BaseOutput
24
  from diffusers.models.embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps
25
  from diffusers.models.modeling_flax_utils import FlaxModelMixin
26
+ from .unet_2d_blocks_flax import (
27
  FlaxCrossAttnDownBlock2D,
 
28
  FlaxDownBlock2D,
29
+ FlaxUNetCrossAttnMidBlock2D,
 
30
  )
31
 
32
 
 
169
  sample_shape = (1, self.in_channels, self.sample_size, self.sample_size)
170
  sample = jnp.zeros(sample_shape, dtype=jnp.float32)
171
  timesteps = jnp.ones((1,), dtype=jnp.int32)
172
+ encoder_hidden_states = jnp.zeros((1, 1, self.cross_attention_dim), dtype=jnp.float32)
 
 
173
  controlnet_cond_shape = (1, 3, self.sample_size * 8, self.sample_size * 8)
174
  controlnet_cond = jnp.zeros(controlnet_cond_shape, dtype=jnp.float32)
175
 
176
  params_rng, dropout_rng = jax.random.split(rng)
177
  rngs = {"params": params_rng, "dropout": dropout_rng}
178
 
179
+ return self.init(rngs, sample, timesteps, encoder_hidden_states, controlnet_cond)["params"]
 
 
180
 
181
  def setup(self):
182
  block_out_channels = self.block_out_channels
 
193
 
194
  # time
195
  self.time_proj = FlaxTimesteps(
196
+ block_out_channels[0], flip_sin_to_cos=self.flip_sin_to_cos, freq_shift=self.config.freq_shift
 
 
197
  )
198
  self.time_embedding = FlaxTimestepEmbedding(time_embed_dim, dtype=self.dtype)
199
 
 
282
 
283
  # mid
284
  mid_block_channel = block_out_channels[-1]
285
+ self.mid_block = FlaxUNetCrossAttnMidBlock2D(
286
  in_channels=mid_block_channel,
287
  dropout=self.dropout,
288
  attn_num_head_channels=attention_head_dim[-1],
 
353
  down_block_res_samples = (sample,)
354
  for down_block in self.down_blocks:
355
  if isinstance(down_block, FlaxCrossAttnDownBlock2D):
356
+ sample, res_samples = down_block(sample, t_emb, encoder_hidden_states, deterministic=not train)
 
 
357
  else:
358
  sample, res_samples = down_block(sample, t_emb, deterministic=not train)
359
  down_block_res_samples += res_samples
360
 
361
  # 4. mid
362
+ sample = self.mid_block(sample, t_emb, encoder_hidden_states, deterministic=not train)
 
 
363
 
364
  # 5. contronet blocks
365
  controlnet_down_block_res_samples = ()
366
+ for down_block_res_sample, controlnet_block in zip(down_block_res_samples, self.controlnet_down_blocks):
 
 
367
  down_block_res_sample = controlnet_block(down_block_res_sample)
368
  controlnet_down_block_res_samples += (down_block_res_sample,)
369
 
 
372
  mid_block_res_sample = self.controlnet_mid_block(sample)
373
 
374
  # 6. scaling
375
+ down_block_res_samples = [sample * conditioning_scale for sample in down_block_res_samples]
 
 
376
  mid_block_res_sample *= conditioning_scale
377
 
378
  if not return_dict:
379
  return (down_block_res_samples, mid_block_res_sample)
380
 
381
  return FlaxControlNetOutput(
382
+ down_block_res_samples=down_block_res_samples, mid_block_res_sample=mid_block_res_sample
383
+ )
 
text_to_animation/models/cross_frame_attention_flax.py CHANGED
@@ -19,6 +19,8 @@ import flax.linen as nn
19
  import jax
20
  import jax.numpy as jnp
21
 
 
 
22
  # from diffusers.models.attention_flax import FlaxBasicTransformerBlock
23
  from diffusers.models.attention_flax import FlaxFeedForward, jax_memory_efficient_attention
24
 
@@ -32,7 +34,7 @@ def rearrange_4(array):
32
 
33
  class FlaxCrossFrameAttention(nn.Module):
34
  r"""
35
- A Flax multi-head attention module, with cross-frame attention as described in: https://arxiv.org/abs/2303.13439
36
 
37
  Parameters:
38
  query_dim (:obj:`int`):
@@ -50,6 +52,7 @@ class FlaxCrossFrameAttention(nn.Module):
50
  batch_size: The number that represents actual batch size, other than the frames.
51
  For example, using calling unet with a single prompt and num_images_per_prompt=1, batch_size should be
52
  equal to 2, due to classifier-free guidance.
 
53
  """
54
  query_dim: int
55
  heads: int = 8
@@ -152,6 +155,173 @@ class FlaxCrossFrameAttention(nn.Module):
152
  hidden_states = self.proj_attn(hidden_states)
153
  return hidden_states
154
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
155
  class FlaxBasicTransformerBlock(nn.Module):
156
  r"""
157
  A Flax transformer block layer with `GLU` (Gated Linear Unit) activation function as described in:
@@ -222,6 +392,76 @@ class FlaxBasicTransformerBlock(nn.Module):
222
 
223
  return hidden_states
224
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
225
 
226
  class FlaxCrossFrameTransformer2DModel(nn.Module):
227
  r"""
@@ -320,4 +560,99 @@ class FlaxCrossFrameTransformer2DModel(nn.Module):
320
  hidden_states = hidden_states + residual
321
  return hidden_states
322
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
323
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19
  import jax
20
  import jax.numpy as jnp
21
 
22
+ from einops import repeat
23
+
24
  # from diffusers.models.attention_flax import FlaxBasicTransformerBlock
25
  from diffusers.models.attention_flax import FlaxFeedForward, jax_memory_efficient_attention
26
 
 
34
 
35
  class FlaxCrossFrameAttention(nn.Module):
36
  r"""
37
+ A Flax multi-head attention module as described in: https://arxiv.org/abs/1706.03762
38
 
39
  Parameters:
40
  query_dim (:obj:`int`):
 
52
  batch_size: The number that represents actual batch size, other than the frames.
53
  For example, using calling unet with a single prompt and num_images_per_prompt=1, batch_size should be
54
  equal to 2, due to classifier-free guidance.
55
+
56
  """
57
  query_dim: int
58
  heads: int = 8
 
155
  hidden_states = self.proj_attn(hidden_states)
156
  return hidden_states
157
 
158
+ class FlaxLoRALinearLayer(nn.Module):
159
+ out_features: int
160
+ dtype: jnp.dtype = jnp.float32
161
+ rank: int=4
162
+
163
+ def setup(self):
164
+ self.down = nn.Dense(self.rank, use_bias=False, kernel_init=nn.initializers.normal(stddev=1 / self.rank), dtype=self.dtype, name="down_lora")
165
+ self.up = nn.Dense(self.out_features, use_bias=False, kernel_init=nn.initializers.zeros, dtype=self.dtype, name="up_lora")
166
+
167
+ def __call__(self, hidden_states):
168
+ down_hidden_states = self.down(hidden_states)
169
+ up_hidden_states = self.up(down_hidden_states)
170
+ return up_hidden_states
171
+
172
+ class LoRAPositionalEncoding(nn.Module):
173
+ d_model : int # Hidden dimensionality of the input.
174
+ rank: int=4
175
+ dtype: jnp.dtype = jnp.float32
176
+ max_len : int = 200 # Maximum length of a sequence to expect.
177
+
178
+ def setup(self):
179
+ # Create matrix of [SeqLen, HiddenDim] representing the positional encoding for max_len inputs
180
+ pe = jnp.zeros((self.max_len, self.d_model), dtype=self.dtype)
181
+ position = jnp.arange(0, self.max_len, dtype=self.dtype)[:,None]
182
+ div_term = jnp.exp(jnp.arange(0, self.d_model, 2) * (-jnp.log(10000.0) / self.d_model))
183
+ pe = pe.at[:, 0::2].set(jnp.sin(position * div_term))
184
+ pe = pe.at[:, 1::2].set(jnp.cos(position * div_term))
185
+ self.pe = pe
186
+ self.lora_pe = FlaxLoRALinearLayer(self.d_model, rank=self.rank, dtype=self.dtype)
187
+
188
+ def __call__(self, x):
189
+ #x is (F // f, f, D, C)
190
+ b, f, d, c = x.shape
191
+ pe = repeat(self.lora_pe(self.pe[:f]), 'f c -> b f d c', b=b, d=d)
192
+ return x + pe
193
+
194
+ class FlaxLoRACrossFrameAttention(nn.Module):
195
+ r"""
196
+ A Flax multi-head attention module as described in: https://arxiv.org/abs/1706.03762
197
+
198
+ Parameters:
199
+ query_dim (:obj:`int`):
200
+ Input hidden states dimension
201
+ heads (:obj:`int`, *optional*, defaults to 8):
202
+ Number of heads
203
+ dim_head (:obj:`int`, *optional*, defaults to 64):
204
+ Hidden states dimension inside each head
205
+ dropout (:obj:`float`, *optional*, defaults to 0.0):
206
+ Dropout rate
207
+ use_memory_efficient_attention (`bool`, *optional*, defaults to `False`):
208
+ enable memory efficient attention https://arxiv.org/abs/2112.05682
209
+ dtype (:obj:`jnp.dtype`, *optional*, defaults to jnp.float32):
210
+ Parameters `dtype`
211
+ batch_size: The number that represents actual batch size, other than the frames.
212
+ For example, using calling unet with a single prompt and num_images_per_prompt=1, batch_size should be
213
+ equal to 2, due to classifier-free guidance.
214
+
215
+ """
216
+ query_dim: int
217
+ heads: int = 8
218
+ dim_head: int = 64
219
+ dropout: float = 0.0
220
+ use_memory_efficient_attention: bool = False
221
+ dtype: jnp.dtype = jnp.float32
222
+ batch_size : int = 2
223
+ rank: int=4
224
+
225
+ def setup(self):
226
+ inner_dim = self.dim_head * self.heads
227
+ self.scale = self.dim_head**-0.5
228
+
229
+ # Weights were exported with old names {to_q, to_k, to_v, to_out}
230
+ self.query = nn.Dense(inner_dim, use_bias=False, dtype=self.dtype, name="to_q")
231
+ self.key = nn.Dense(inner_dim, use_bias=False, dtype=self.dtype, name="to_k")
232
+ self.value = nn.Dense(inner_dim, use_bias=False, dtype=self.dtype, name="to_v")
233
+
234
+ self.add_k_proj = nn.Dense(inner_dim, use_bias=False, dtype=self.dtype)
235
+ self.add_v_proj = nn.Dense(inner_dim, use_bias=False, dtype=self.dtype)
236
+
237
+ self.proj_attn = nn.Dense(self.query_dim, dtype=self.dtype, name="to_out_0")
238
+
239
+ self.to_q_lora = FlaxLoRALinearLayer(inner_dim, rank=self.rank, dtype=self.dtype)
240
+ self.to_k_lora = FlaxLoRALinearLayer(inner_dim, rank=self.rank, dtype=self.dtype)
241
+ self.to_v_lora = FlaxLoRALinearLayer(inner_dim, rank=self.rank, dtype=self.dtype)
242
+ self.to_out_lora = FlaxLoRALinearLayer(inner_dim, rank=self.rank, dtype=self.dtype)
243
+
244
+ def reshape_heads_to_batch_dim(self, tensor):
245
+ batch_size, seq_len, dim = tensor.shape
246
+ head_size = self.heads
247
+ tensor = tensor.reshape(batch_size, seq_len, head_size, dim // head_size)
248
+ tensor = jnp.transpose(tensor, (0, 2, 1, 3))
249
+ tensor = tensor.reshape(batch_size * head_size, seq_len, dim // head_size)
250
+ return tensor
251
+
252
+ def reshape_batch_dim_to_heads(self, tensor):
253
+ batch_size, seq_len, dim = tensor.shape
254
+ head_size = self.heads
255
+ tensor = tensor.reshape(batch_size // head_size, head_size, seq_len, dim)
256
+ tensor = jnp.transpose(tensor, (0, 2, 1, 3))
257
+ tensor = tensor.reshape(batch_size // head_size, seq_len, dim * head_size)
258
+ return tensor
259
+
260
+ def __call__(self, hidden_states, context=None, deterministic=True, scale=1.):
261
+ is_cross_attention = context is not None
262
+ context = hidden_states if context is None else context
263
+ query_proj = self.query(hidden_states) + scale * self.to_q_lora(hidden_states)
264
+ key_proj = self.key(context) + scale * self.to_k_lora(context)
265
+ value_proj = self.value(context) + scale * self.to_v_lora(context)
266
+
267
+ # Sparse Attention
268
+ if not is_cross_attention:
269
+ video_length = 1 if key_proj.shape[0] < self.batch_size else key_proj.shape[0] // self.batch_size
270
+ first_frame_index = [0] * video_length
271
+ #first frame ==> previous frame
272
+ previous_frame_index = jnp.array([0] + list(range(video_length - 1)))
273
+
274
+ # rearrange keys to have batch and frames in the 1st and 2nd dims respectively
275
+ key_proj = rearrange_3(key_proj, video_length)
276
+ key_proj = key_proj[:, first_frame_index]
277
+ # rearrange values to have batch and frames in the 1st and 2nd dims respectively
278
+ value_proj = rearrange_3(value_proj, video_length)
279
+ value_proj = value_proj[:, first_frame_index]
280
+
281
+ # rearrange back to original shape
282
+ key_proj = rearrange_4(key_proj)
283
+ value_proj = rearrange_4(value_proj)
284
+
285
+ query_states = self.reshape_heads_to_batch_dim(query_proj)
286
+ key_states = self.reshape_heads_to_batch_dim(key_proj)
287
+ value_states = self.reshape_heads_to_batch_dim(value_proj)
288
+
289
+ if self.use_memory_efficient_attention:
290
+ query_states = query_states.transpose(1, 0, 2)
291
+ key_states = key_states.transpose(1, 0, 2)
292
+ value_states = value_states.transpose(1, 0, 2)
293
+
294
+ # this if statement create a chunk size for each layer of the unet
295
+ # the chunk size is equal to the query_length dimension of the deepest layer of the unet
296
+
297
+ flatten_latent_dim = query_states.shape[-3]
298
+ if flatten_latent_dim % 64 == 0:
299
+ query_chunk_size = int(flatten_latent_dim / 64)
300
+ elif flatten_latent_dim % 16 == 0:
301
+ query_chunk_size = int(flatten_latent_dim / 16)
302
+ elif flatten_latent_dim % 4 == 0:
303
+ query_chunk_size = int(flatten_latent_dim / 4)
304
+ else:
305
+ query_chunk_size = int(flatten_latent_dim)
306
+
307
+ hidden_states = jax_memory_efficient_attention(
308
+ query_states, key_states, value_states, query_chunk_size=query_chunk_size, key_chunk_size=4096 * 4
309
+ )
310
+
311
+ hidden_states = hidden_states.transpose(1, 0, 2)
312
+ else:
313
+ # compute attentions
314
+ attention_scores = jnp.einsum("b i d, b j d->b i j", query_states, key_states)
315
+ attention_scores = attention_scores * self.scale
316
+ attention_probs = nn.softmax(attention_scores, axis=2)
317
+
318
+ # attend to values
319
+ hidden_states = jnp.einsum("b i j, b j d -> b i d", attention_probs, value_states)
320
+
321
+ hidden_states = self.reshape_batch_dim_to_heads(hidden_states)
322
+ hidden_states = self.proj_attn(hidden_states) + scale * self.to_out_lora(hidden_states)
323
+ return hidden_states
324
+
325
  class FlaxBasicTransformerBlock(nn.Module):
326
  r"""
327
  A Flax transformer block layer with `GLU` (Gated Linear Unit) activation function as described in:
 
392
 
393
  return hidden_states
394
 
395
+ class FlaxLoRABasicTransformerBlock(nn.Module):
396
+ r"""
397
+ A Flax transformer block layer with `GLU` (Gated Linear Unit) activation function as described in:
398
+ https://arxiv.org/abs/1706.03762
399
+
400
+
401
+ Parameters:
402
+ dim (:obj:`int`):
403
+ Inner hidden states dimension
404
+ n_heads (:obj:`int`):
405
+ Number of heads
406
+ d_head (:obj:`int`):
407
+ Hidden states dimension inside each head
408
+ dropout (:obj:`float`, *optional*, defaults to 0.0):
409
+ Dropout rate
410
+ only_cross_attention (`bool`, defaults to `False`):
411
+ Whether to only apply cross attention.
412
+ dtype (:obj:`jnp.dtype`, *optional*, defaults to jnp.float32):
413
+ Parameters `dtype`
414
+ use_memory_efficient_attention (`bool`, *optional*, defaults to `False`):
415
+ enable memory efficient attention https://arxiv.org/abs/2112.05682
416
+ """
417
+ dim: int
418
+ n_heads: int
419
+ d_head: int
420
+ dropout: float = 0.0
421
+ only_cross_attention: bool = False
422
+ dtype: jnp.dtype = jnp.float32
423
+ use_memory_efficient_attention: bool = False
424
+
425
+ def setup(self):
426
+
427
+ # self attention (or cross_attention if only_cross_attention is True)
428
+ self.attn1 = FlaxLoRACrossFrameAttention(
429
+ self.dim, self.n_heads, self.d_head, self.dropout, self.use_memory_efficient_attention, dtype=self.dtype,
430
+ )
431
+ # cross attention
432
+ self.attn2 = FlaxLoRACrossFrameAttention(
433
+ self.dim, self.n_heads, self.d_head, self.dropout, self.use_memory_efficient_attention, dtype=self.dtype,
434
+ )
435
+ self.ff = FlaxFeedForward(dim=self.dim, dropout=self.dropout, dtype=self.dtype)
436
+ self.norm1 = nn.LayerNorm(epsilon=1e-5, dtype=self.dtype)
437
+ self.norm2 = nn.LayerNorm(epsilon=1e-5, dtype=self.dtype)
438
+ self.norm3 = nn.LayerNorm(epsilon=1e-5, dtype=self.dtype)
439
+
440
+
441
+ def __call__(self, hidden_states, context, deterministic=True, scale=1.):
442
+ # self attention
443
+ residual = hidden_states
444
+
445
+ if self.only_cross_attention:
446
+ hidden_states = self.attn1(self.norm1(hidden_states), context, deterministic=deterministic, scale=scale)
447
+ else:
448
+ hidden_states = self.attn1(self.norm1(hidden_states), deterministic=deterministic, scale=scale)
449
+ hidden_states = hidden_states + residual
450
+
451
+ # cross attention
452
+ residual = hidden_states
453
+
454
+ hidden_states = self.attn2(self.norm2(hidden_states), context, deterministic=deterministic, scale=scale)
455
+
456
+ hidden_states = hidden_states + residual
457
+
458
+ # feed forward
459
+ residual = hidden_states
460
+ hidden_states = self.ff(self.norm3(hidden_states), deterministic=deterministic)
461
+ hidden_states = hidden_states + residual
462
+
463
+ return hidden_states
464
+
465
 
466
  class FlaxCrossFrameTransformer2DModel(nn.Module):
467
  r"""
 
560
  hidden_states = hidden_states + residual
561
  return hidden_states
562
 
563
+ class FlaxLoRACrossFrameTransformer2DModel(nn.Module):
564
+ r"""
565
+ A Spatial Transformer layer with Gated Linear Unit (GLU) activation function as described in:
566
+ https://arxiv.org/pdf/1506.02025.pdf
567
+
568
+
569
+ Parameters:
570
+ in_channels (:obj:`int`):
571
+ Input number of channels
572
+ n_heads (:obj:`int`):
573
+ Number of heads
574
+ d_head (:obj:`int`):
575
+ Hidden states dimension inside each head
576
+ depth (:obj:`int`, *optional*, defaults to 1):
577
+ Number of transformers block
578
+ dropout (:obj:`float`, *optional*, defaults to 0.0):
579
+ Dropout rate
580
+ use_linear_projection (`bool`, defaults to `False`): tbd
581
+ only_cross_attention (`bool`, defaults to `False`): tbd
582
+ dtype (:obj:`jnp.dtype`, *optional*, defaults to jnp.float32):
583
+ Parameters `dtype`
584
+ use_memory_efficient_attention (`bool`, *optional*, defaults to `False`):
585
+ enable memory efficient attention https://arxiv.org/abs/2112.05682
586
+ """
587
+ in_channels: int
588
+ n_heads: int
589
+ d_head: int
590
+ depth: int = 1
591
+ dropout: float = 0.0
592
+ use_linear_projection: bool = False
593
+ only_cross_attention: bool = False
594
+ dtype: jnp.dtype = jnp.float32
595
+ use_memory_efficient_attention: bool = False
596
+
597
+ def setup(self):
598
+ self.norm = nn.GroupNorm(num_groups=32, epsilon=1e-5)
599
+
600
+ inner_dim = self.n_heads * self.d_head
601
+ if self.use_linear_projection:
602
+ self.proj_in = nn.Dense(inner_dim, dtype=self.dtype)
603
+ else:
604
+ self.proj_in = nn.Conv(
605
+ inner_dim,
606
+ kernel_size=(1, 1),
607
+ strides=(1, 1),
608
+ padding="VALID",
609
+ dtype=self.dtype,
610
+ )
611
+
612
+ self.transformer_blocks = [
613
+ FlaxLoRABasicTransformerBlock(
614
+ inner_dim,
615
+ self.n_heads,
616
+ self.d_head,
617
+ dropout=self.dropout,
618
+ only_cross_attention=self.only_cross_attention,
619
+ dtype=self.dtype,
620
+ use_memory_efficient_attention=self.use_memory_efficient_attention,
621
+ )
622
+ for _ in range(self.depth)
623
+ ]
624
+
625
+ if self.use_linear_projection:
626
+ self.proj_out = nn.Dense(inner_dim, dtype=self.dtype)
627
+ else:
628
+ self.proj_out = nn.Conv(
629
+ inner_dim,
630
+ kernel_size=(1, 1),
631
+ strides=(1, 1),
632
+ padding="VALID",
633
+ dtype=self.dtype,
634
+ )
635
 
636
+ def __call__(self, hidden_states, context, deterministic=True, scale=1.0):
637
+ batch, height, width, channels = hidden_states.shape
638
+ residual = hidden_states
639
+ hidden_states = self.norm(hidden_states)
640
+ if self.use_linear_projection:
641
+ hidden_states = hidden_states.reshape(batch, height * width, channels)
642
+ hidden_states = self.proj_in(hidden_states)
643
+ else:
644
+ hidden_states = self.proj_in(hidden_states)
645
+ hidden_states = hidden_states.reshape(batch, height * width, channels)
646
+
647
+ for transformer_block in self.transformer_blocks:
648
+ hidden_states = transformer_block(hidden_states, context, deterministic=deterministic, scale=scale)
649
+
650
+ if self.use_linear_projection:
651
+ hidden_states = self.proj_out(hidden_states)
652
+ hidden_states = hidden_states.reshape(batch, height, width, channels)
653
+ else:
654
+ hidden_states = hidden_states.reshape(batch, height, width, channels)
655
+ hidden_states = self.proj_out(hidden_states)
656
+
657
+ hidden_states = hidden_states + residual
658
+ return hidden_states
text_to_animation/models/unet_2d_blocks_flax.py CHANGED
@@ -17,7 +17,7 @@ import jax.numpy as jnp
17
 
18
  # from diffusers.models.attention_flax import FlaxTransformer2DModel
19
  from diffusers.models.resnet_flax import FlaxDownsample2D, FlaxResnetBlock2D, FlaxUpsample2D
20
- from .cross_frame_attention_flax import FlaxCrossFrameTransformer2DModel
21
 
22
  class FlaxCrossAttnDownBlock2D(nn.Module):
23
  r"""
@@ -100,6 +100,87 @@ class FlaxCrossAttnDownBlock2D(nn.Module):
100
  return hidden_states, output_states
101
 
102
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
103
  class FlaxDownBlock2D(nn.Module):
104
  r"""
105
  Flax 2D downsizing block
@@ -240,6 +321,90 @@ class FlaxCrossAttnUpBlock2D(nn.Module):
240
  return hidden_states
241
 
242
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
243
  class FlaxUpBlock2D(nn.Module):
244
  r"""
245
  Flax 2D upsampling block
@@ -302,7 +467,7 @@ class FlaxUpBlock2D(nn.Module):
302
  return hidden_states
303
 
304
 
305
- class FlaxUNetMidBlock2DCrossAttn(nn.Module):
306
  r"""
307
  Cross Attention 2D Mid-level block - original architecture from Unet transformers: https://arxiv.org/abs/2103.06104
308
  Parameters:
@@ -369,4 +534,74 @@ class FlaxUNetMidBlock2DCrossAttn(nn.Module):
369
  hidden_states = attn(hidden_states, encoder_hidden_states, deterministic=deterministic)
370
  hidden_states = resnet(hidden_states, temb, deterministic=deterministic)
371
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
372
  return hidden_states
 
17
 
18
  # from diffusers.models.attention_flax import FlaxTransformer2DModel
19
  from diffusers.models.resnet_flax import FlaxDownsample2D, FlaxResnetBlock2D, FlaxUpsample2D
20
+ from .cross_frame_attention_flax import FlaxCrossFrameTransformer2DModel, FlaxLoRACrossFrameTransformer2DModel
21
 
22
  class FlaxCrossAttnDownBlock2D(nn.Module):
23
  r"""
 
100
  return hidden_states, output_states
101
 
102
 
103
+ class FlaxLoRACrossAttnDownBlock2D(nn.Module):
104
+ r"""
105
+ Cross Attention 2D Downsizing block - original architecture from Unet transformers:
106
+ https://arxiv.org/abs/2103.06104
107
+ Parameters:
108
+ in_channels (:obj:`int`):
109
+ Input channels
110
+ out_channels (:obj:`int`):
111
+ Output channels
112
+ dropout (:obj:`float`, *optional*, defaults to 0.0):
113
+ Dropout rate
114
+ num_layers (:obj:`int`, *optional*, defaults to 1):
115
+ Number of attention blocks layers
116
+ attn_num_head_channels (:obj:`int`, *optional*, defaults to 1):
117
+ Number of attention heads of each spatial transformer block
118
+ add_downsample (:obj:`bool`, *optional*, defaults to `True`):
119
+ Whether to add downsampling layer before each final output
120
+ use_memory_efficient_attention (`bool`, *optional*, defaults to `False`):
121
+ enable memory efficient attention https://arxiv.org/abs/2112.05682
122
+ dtype (:obj:`jnp.dtype`, *optional*, defaults to jnp.float32):
123
+ Parameters `dtype`
124
+ """
125
+ in_channels: int
126
+ out_channels: int
127
+ dropout: float = 0.0
128
+ num_layers: int = 1
129
+ attn_num_head_channels: int = 1
130
+ add_downsample: bool = True
131
+ use_linear_projection: bool = False
132
+ only_cross_attention: bool = False
133
+ use_memory_efficient_attention: bool = False
134
+ dtype: jnp.dtype = jnp.float32
135
+
136
+ def setup(self):
137
+ resnets = []
138
+ attentions = []
139
+
140
+ for i in range(self.num_layers):
141
+ in_channels = self.in_channels if i == 0 else self.out_channels
142
+
143
+ res_block = FlaxResnetBlock2D(
144
+ in_channels=in_channels,
145
+ out_channels=self.out_channels,
146
+ dropout_prob=self.dropout,
147
+ dtype=self.dtype,
148
+ )
149
+ resnets.append(res_block)
150
+
151
+ attn_block = FlaxLoRACrossFrameTransformer2DModel(
152
+ in_channels=self.out_channels,
153
+ n_heads=self.attn_num_head_channels,
154
+ d_head=self.out_channels // self.attn_num_head_channels,
155
+ depth=1,
156
+ use_linear_projection=self.use_linear_projection,
157
+ only_cross_attention=self.only_cross_attention,
158
+ use_memory_efficient_attention=self.use_memory_efficient_attention,
159
+ dtype=self.dtype,
160
+ )
161
+ attentions.append(attn_block)
162
+
163
+ self.resnets = resnets
164
+ self.attentions = attentions
165
+
166
+ if self.add_downsample:
167
+ self.downsamplers_0 = FlaxDownsample2D(self.out_channels, dtype=self.dtype)
168
+
169
+ def __call__(self, hidden_states, temb, encoder_hidden_states, deterministic=True, scale=1.):
170
+ output_states = ()
171
+
172
+ for resnet, attn in zip(self.resnets, self.attentions):
173
+ hidden_states = resnet(hidden_states, temb, deterministic=deterministic)
174
+ hidden_states = attn(hidden_states, encoder_hidden_states, deterministic=deterministic, scale=scale)
175
+ output_states += (hidden_states,)
176
+
177
+ if self.add_downsample:
178
+ hidden_states = self.downsamplers_0(hidden_states)
179
+ output_states += (hidden_states,)
180
+
181
+ return hidden_states, output_states
182
+
183
+
184
  class FlaxDownBlock2D(nn.Module):
185
  r"""
186
  Flax 2D downsizing block
 
321
  return hidden_states
322
 
323
 
324
+ class FlaxLoRACrossAttnUpBlock2D(nn.Module):
325
+ r"""
326
+ Cross Attention 2D Upsampling block - original architecture from Unet transformers:
327
+ https://arxiv.org/abs/2103.06104
328
+ Parameters:
329
+ in_channels (:obj:`int`):
330
+ Input channels
331
+ out_channels (:obj:`int`):
332
+ Output channels
333
+ dropout (:obj:`float`, *optional*, defaults to 0.0):
334
+ Dropout rate
335
+ num_layers (:obj:`int`, *optional*, defaults to 1):
336
+ Number of attention blocks layers
337
+ attn_num_head_channels (:obj:`int`, *optional*, defaults to 1):
338
+ Number of attention heads of each spatial transformer block
339
+ add_upsample (:obj:`bool`, *optional*, defaults to `True`):
340
+ Whether to add upsampling layer before each final output
341
+ use_memory_efficient_attention (`bool`, *optional*, defaults to `False`):
342
+ enable memory efficient attention https://arxiv.org/abs/2112.05682
343
+ dtype (:obj:`jnp.dtype`, *optional*, defaults to jnp.float32):
344
+ Parameters `dtype`
345
+ """
346
+ in_channels: int
347
+ out_channels: int
348
+ prev_output_channel: int
349
+ dropout: float = 0.0
350
+ num_layers: int = 1
351
+ attn_num_head_channels: int = 1
352
+ add_upsample: bool = True
353
+ use_linear_projection: bool = False
354
+ only_cross_attention: bool = False
355
+ use_memory_efficient_attention: bool = False
356
+ dtype: jnp.dtype = jnp.float32
357
+
358
+ def setup(self):
359
+ resnets = []
360
+ attentions = []
361
+
362
+ for i in range(self.num_layers):
363
+ res_skip_channels = self.in_channels if (i == self.num_layers - 1) else self.out_channels
364
+ resnet_in_channels = self.prev_output_channel if i == 0 else self.out_channels
365
+
366
+ res_block = FlaxResnetBlock2D(
367
+ in_channels=resnet_in_channels + res_skip_channels,
368
+ out_channels=self.out_channels,
369
+ dropout_prob=self.dropout,
370
+ dtype=self.dtype,
371
+ )
372
+ resnets.append(res_block)
373
+
374
+ attn_block = FlaxLoRACrossFrameTransformer2DModel(
375
+ in_channels=self.out_channels,
376
+ n_heads=self.attn_num_head_channels,
377
+ d_head=self.out_channels // self.attn_num_head_channels,
378
+ depth=1,
379
+ use_linear_projection=self.use_linear_projection,
380
+ only_cross_attention=self.only_cross_attention,
381
+ use_memory_efficient_attention=self.use_memory_efficient_attention,
382
+ dtype=self.dtype,
383
+ )
384
+ attentions.append(attn_block)
385
+
386
+ self.resnets = resnets
387
+ self.attentions = attentions
388
+
389
+ if self.add_upsample:
390
+ self.upsamplers_0 = FlaxUpsample2D(self.out_channels, dtype=self.dtype)
391
+
392
+ def __call__(self, hidden_states, res_hidden_states_tuple, temb, encoder_hidden_states, deterministic=True, scale=1.):
393
+ for resnet, attn in zip(self.resnets, self.attentions):
394
+ # pop res hidden states
395
+ res_hidden_states = res_hidden_states_tuple[-1]
396
+ res_hidden_states_tuple = res_hidden_states_tuple[:-1]
397
+ hidden_states = jnp.concatenate((hidden_states, res_hidden_states), axis=-1)
398
+
399
+ hidden_states = resnet(hidden_states, temb, deterministic=deterministic)
400
+ hidden_states = attn(hidden_states, encoder_hidden_states, deterministic=deterministic, scale=scale)
401
+
402
+ if self.add_upsample:
403
+ hidden_states = self.upsamplers_0(hidden_states)
404
+
405
+ return hidden_states
406
+
407
+
408
  class FlaxUpBlock2D(nn.Module):
409
  r"""
410
  Flax 2D upsampling block
 
467
  return hidden_states
468
 
469
 
470
+ class FlaxUNetCrossAttnMidBlock2D(nn.Module):
471
  r"""
472
  Cross Attention 2D Mid-level block - original architecture from Unet transformers: https://arxiv.org/abs/2103.06104
473
  Parameters:
 
534
  hidden_states = attn(hidden_states, encoder_hidden_states, deterministic=deterministic)
535
  hidden_states = resnet(hidden_states, temb, deterministic=deterministic)
536
 
537
+ return hidden_states
538
+
539
+
540
+ class FlaxLoRAUNetCrossAttnMidBlock2D(nn.Module):
541
+ r"""
542
+ Cross Attention 2D Mid-level block - original architecture from Unet transformers: https://arxiv.org/abs/2103.06104
543
+ Parameters:
544
+ in_channels (:obj:`int`):
545
+ Input channels
546
+ dropout (:obj:`float`, *optional*, defaults to 0.0):
547
+ Dropout rate
548
+ num_layers (:obj:`int`, *optional*, defaults to 1):
549
+ Number of attention blocks layers
550
+ attn_num_head_channels (:obj:`int`, *optional*, defaults to 1):
551
+ Number of attention heads of each spatial transformer block
552
+ use_memory_efficient_attention (`bool`, *optional*, defaults to `False`):
553
+ enable memory efficient attention https://arxiv.org/abs/2112.05682
554
+ dtype (:obj:`jnp.dtype`, *optional*, defaults to jnp.float32):
555
+ Parameters `dtype`
556
+ """
557
+ in_channels: int
558
+ dropout: float = 0.0
559
+ num_layers: int = 1
560
+ attn_num_head_channels: int = 1
561
+ use_linear_projection: bool = False
562
+ use_memory_efficient_attention: bool = False
563
+ dtype: jnp.dtype = jnp.float32
564
+
565
+ def setup(self):
566
+ # there is always at least one resnet
567
+ resnets = [
568
+ FlaxResnetBlock2D(
569
+ in_channels=self.in_channels,
570
+ out_channels=self.in_channels,
571
+ dropout_prob=self.dropout,
572
+ dtype=self.dtype,
573
+ )
574
+ ]
575
+
576
+ attentions = []
577
+
578
+ for _ in range(self.num_layers):
579
+ attn_block = FlaxLoRACrossFrameTransformer2DModel(
580
+ in_channels=self.in_channels,
581
+ n_heads=self.attn_num_head_channels,
582
+ d_head=self.in_channels // self.attn_num_head_channels,
583
+ depth=1,
584
+ use_linear_projection=self.use_linear_projection,
585
+ use_memory_efficient_attention=self.use_memory_efficient_attention,
586
+ dtype=self.dtype,
587
+ )
588
+ attentions.append(attn_block)
589
+
590
+ res_block = FlaxResnetBlock2D(
591
+ in_channels=self.in_channels,
592
+ out_channels=self.in_channels,
593
+ dropout_prob=self.dropout,
594
+ dtype=self.dtype,
595
+ )
596
+ resnets.append(res_block)
597
+
598
+ self.resnets = resnets
599
+ self.attentions = attentions
600
+
601
+ def __call__(self, hidden_states, temb, encoder_hidden_states, deterministic=True, scale=1.):
602
+ hidden_states = self.resnets[0](hidden_states, temb)
603
+ for attn, resnet in zip(self.attentions, self.resnets[1:]):
604
+ hidden_states = attn(hidden_states, encoder_hidden_states, deterministic=deterministic, scale=scale)
605
+ hidden_states = resnet(hidden_states, temb, deterministic=deterministic)
606
+
607
  return hidden_states
text_to_animation/models/unet_2d_condition_flax.py CHANGED
@@ -26,15 +26,17 @@ from diffusers.configuration_utils import ConfigMixin, flax_register_to_config
26
  from diffusers.utils import BaseOutput
27
  from diffusers.models.embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps
28
  from diffusers.models.modeling_flax_utils import FlaxModelMixin
29
- from diffusers.models.unet_2d_blocks_flax import (
30
  FlaxCrossAttnDownBlock2D,
31
  FlaxCrossAttnUpBlock2D,
 
 
 
 
32
  FlaxDownBlock2D,
33
- FlaxUNetMidBlock2DCrossAttn,
34
  FlaxUpBlock2D,
35
  )
36
 
37
-
38
  @flax.struct.dataclass
39
  class FlaxUNet2DConditionOutput(BaseOutput):
40
  """
@@ -105,12 +107,7 @@ class FlaxUNet2DConditionModel(nn.Module, FlaxModelMixin, ConfigMixin):
105
  "CrossAttnDownBlock2D",
106
  "DownBlock2D",
107
  )
108
- up_block_types: Tuple[str] = (
109
- "UpBlock2D",
110
- "CrossAttnUpBlock2D",
111
- "CrossAttnUpBlock2D",
112
- "CrossAttnUpBlock2D",
113
- )
114
  only_cross_attention: Union[bool, Tuple[bool]] = False
115
  block_out_channels: Tuple[int] = (320, 640, 1280, 1280)
116
  layers_per_block: int = 2
@@ -118,7 +115,7 @@ class FlaxUNet2DConditionModel(nn.Module, FlaxModelMixin, ConfigMixin):
118
  cross_attention_dim: int = 1280
119
  dropout: float = 0.0
120
  use_linear_projection: bool = False
121
- dtype: jnp.dtype = jnp.float32
122
  flip_sin_to_cos: bool = True
123
  freq_shift: int = 0
124
  use_memory_efficient_attention: bool = False
@@ -126,11 +123,9 @@ class FlaxUNet2DConditionModel(nn.Module, FlaxModelMixin, ConfigMixin):
126
  def init_weights(self, rng: jax.random.KeyArray) -> FrozenDict:
127
  # init input tensors
128
  sample_shape = (1, self.in_channels, self.sample_size, self.sample_size)
129
- sample = jnp.zeros(sample_shape, dtype=jnp.float32)
130
  timesteps = jnp.ones((1,), dtype=jnp.int32)
131
- encoder_hidden_states = jnp.zeros(
132
- (1, 1, self.cross_attention_dim), dtype=jnp.float32
133
- )
134
 
135
  params_rng, dropout_rng = jax.random.split(rng)
136
  rngs = {"params": params_rng, "dropout": dropout_rng}
@@ -152,9 +147,7 @@ class FlaxUNet2DConditionModel(nn.Module, FlaxModelMixin, ConfigMixin):
152
 
153
  # time
154
  self.time_proj = FlaxTimesteps(
155
- block_out_channels[0],
156
- flip_sin_to_cos=self.flip_sin_to_cos,
157
- freq_shift=self.config.freq_shift,
158
  )
159
  self.time_embedding = FlaxTimestepEmbedding(time_embed_dim, dtype=self.dtype)
160
 
@@ -201,7 +194,7 @@ class FlaxUNet2DConditionModel(nn.Module, FlaxModelMixin, ConfigMixin):
201
  self.down_blocks = down_blocks
202
 
203
  # mid
204
- self.mid_block = FlaxUNetMidBlock2DCrossAttn(
205
  in_channels=block_out_channels[-1],
206
  dropout=self.dropout,
207
  attn_num_head_channels=attention_head_dim[-1],
@@ -219,9 +212,7 @@ class FlaxUNet2DConditionModel(nn.Module, FlaxModelMixin, ConfigMixin):
219
  for i, up_block_type in enumerate(self.up_block_types):
220
  prev_output_channel = output_channel
221
  output_channel = reversed_block_out_channels[i]
222
- input_channel = reversed_block_out_channels[
223
- min(i + 1, len(block_out_channels) - 1)
224
- ]
225
 
226
  is_final_block = i == len(block_out_channels) - 1
227
 
@@ -308,9 +299,7 @@ class FlaxUNet2DConditionModel(nn.Module, FlaxModelMixin, ConfigMixin):
308
  down_block_res_samples = (sample,)
309
  for down_block in self.down_blocks:
310
  if isinstance(down_block, FlaxCrossAttnDownBlock2D):
311
- sample, res_samples = down_block(
312
- sample, t_emb, encoder_hidden_states, deterministic=not train
313
- )
314
  else:
315
  sample, res_samples = down_block(sample, t_emb, deterministic=not train)
316
  down_block_res_samples += res_samples
@@ -327,9 +316,7 @@ class FlaxUNet2DConditionModel(nn.Module, FlaxModelMixin, ConfigMixin):
327
  down_block_res_samples = new_down_block_res_samples
328
 
329
  # 4. mid
330
- sample = self.mid_block(
331
- sample, t_emb, encoder_hidden_states, deterministic=not train
332
- )
333
 
334
  if mid_block_additional_residual is not None:
335
  sample += mid_block_additional_residual
@@ -337,9 +324,7 @@ class FlaxUNet2DConditionModel(nn.Module, FlaxModelMixin, ConfigMixin):
337
  # 5. up
338
  for up_block in self.up_blocks:
339
  res_samples = down_block_res_samples[-(self.layers_per_block + 1) :]
340
- down_block_res_samples = down_block_res_samples[
341
- : -(self.layers_per_block + 1)
342
- ]
343
  if isinstance(up_block, FlaxCrossAttnUpBlock2D):
344
  sample = up_block(
345
  sample,
@@ -349,12 +334,321 @@ class FlaxUNet2DConditionModel(nn.Module, FlaxModelMixin, ConfigMixin):
349
  deterministic=not train,
350
  )
351
  else:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
352
  sample = up_block(
353
  sample,
354
  temb=t_emb,
 
355
  res_hidden_states_tuple=res_samples,
356
  deterministic=not train,
 
357
  )
 
 
358
 
359
  # 6. post-process
360
  sample = self.conv_norm_out(sample)
@@ -365,4 +659,4 @@ class FlaxUNet2DConditionModel(nn.Module, FlaxModelMixin, ConfigMixin):
365
  if not return_dict:
366
  return (sample,)
367
 
368
- return FlaxUNet2DConditionOutput(sample=sample)
 
26
  from diffusers.utils import BaseOutput
27
  from diffusers.models.embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps
28
  from diffusers.models.modeling_flax_utils import FlaxModelMixin
29
+ from .unet_2d_blocks_flax import (
30
  FlaxCrossAttnDownBlock2D,
31
  FlaxCrossAttnUpBlock2D,
32
+ FlaxUNetCrossAttnMidBlock2D,
33
+ FlaxLoRACrossAttnDownBlock2D,
34
+ FlaxLoRACrossAttnUpBlock2D,
35
+ FlaxLoRAUNetCrossAttnMidBlock2D,
36
  FlaxDownBlock2D,
 
37
  FlaxUpBlock2D,
38
  )
39
 
 
40
  @flax.struct.dataclass
41
  class FlaxUNet2DConditionOutput(BaseOutput):
42
  """
 
107
  "CrossAttnDownBlock2D",
108
  "DownBlock2D",
109
  )
110
+ up_block_types: Tuple[str] = ("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D")
 
 
 
 
 
111
  only_cross_attention: Union[bool, Tuple[bool]] = False
112
  block_out_channels: Tuple[int] = (320, 640, 1280, 1280)
113
  layers_per_block: int = 2
 
115
  cross_attention_dim: int = 1280
116
  dropout: float = 0.0
117
  use_linear_projection: bool = False
118
+ dtype: jnp.dtype = jnp.float16
119
  flip_sin_to_cos: bool = True
120
  freq_shift: int = 0
121
  use_memory_efficient_attention: bool = False
 
123
  def init_weights(self, rng: jax.random.KeyArray) -> FrozenDict:
124
  # init input tensors
125
  sample_shape = (1, self.in_channels, self.sample_size, self.sample_size)
126
+ sample = jnp.zeros(sample_shape, dtype=self.dtype)
127
  timesteps = jnp.ones((1,), dtype=jnp.int32)
128
+ encoder_hidden_states = jnp.zeros((1, 1, self.cross_attention_dim), dtype=self.dtype)
 
 
129
 
130
  params_rng, dropout_rng = jax.random.split(rng)
131
  rngs = {"params": params_rng, "dropout": dropout_rng}
 
147
 
148
  # time
149
  self.time_proj = FlaxTimesteps(
150
+ block_out_channels[0], flip_sin_to_cos=self.flip_sin_to_cos, freq_shift=self.config.freq_shift
 
 
151
  )
152
  self.time_embedding = FlaxTimestepEmbedding(time_embed_dim, dtype=self.dtype)
153
 
 
194
  self.down_blocks = down_blocks
195
 
196
  # mid
197
+ self.mid_block = FlaxUNetCrossAttnMidBlock2D(
198
  in_channels=block_out_channels[-1],
199
  dropout=self.dropout,
200
  attn_num_head_channels=attention_head_dim[-1],
 
212
  for i, up_block_type in enumerate(self.up_block_types):
213
  prev_output_channel = output_channel
214
  output_channel = reversed_block_out_channels[i]
215
+ input_channel = reversed_block_out_channels[min(i + 1, len(block_out_channels) - 1)]
 
 
216
 
217
  is_final_block = i == len(block_out_channels) - 1
218
 
 
299
  down_block_res_samples = (sample,)
300
  for down_block in self.down_blocks:
301
  if isinstance(down_block, FlaxCrossAttnDownBlock2D):
302
+ sample, res_samples = down_block(sample, t_emb, encoder_hidden_states, deterministic=not train)
 
 
303
  else:
304
  sample, res_samples = down_block(sample, t_emb, deterministic=not train)
305
  down_block_res_samples += res_samples
 
316
  down_block_res_samples = new_down_block_res_samples
317
 
318
  # 4. mid
319
+ sample = self.mid_block(sample, t_emb, encoder_hidden_states, deterministic=not train)
 
 
320
 
321
  if mid_block_additional_residual is not None:
322
  sample += mid_block_additional_residual
 
324
  # 5. up
325
  for up_block in self.up_blocks:
326
  res_samples = down_block_res_samples[-(self.layers_per_block + 1) :]
327
+ down_block_res_samples = down_block_res_samples[: -(self.layers_per_block + 1)]
 
 
328
  if isinstance(up_block, FlaxCrossAttnUpBlock2D):
329
  sample = up_block(
330
  sample,
 
334
  deterministic=not train,
335
  )
336
  else:
337
+ sample = up_block(sample, temb=t_emb, res_hidden_states_tuple=res_samples, deterministic=not train)
338
+
339
+ # 6. post-process
340
+ sample = self.conv_norm_out(sample)
341
+ sample = nn.silu(sample)
342
+ sample = self.conv_out(sample)
343
+ sample = jnp.transpose(sample, (0, 3, 1, 2))
344
+
345
+ if not return_dict:
346
+ return (sample,)
347
+
348
+ return FlaxUNet2DConditionOutput(sample=sample)
349
+
350
+ @flax_register_to_config
351
+ class FlaxLoRAUNet2DConditionModel(nn.Module, FlaxModelMixin, ConfigMixin):
352
+ r"""
353
+
354
+ FlaxLoRAUNet2DConditionModel is a custom FlaxUNet2DConditionModel with a few tweaks:
355
+ - Cross Attention is replaced by Cross-Frame Attention
356
+ - Low Rank Adaptation (LoRA) layers are added to the Cross-Frame Attention
357
+ - An frame positional encoding is added to the encoder_hidden_states via a LoRA linear layer
358
+
359
+ FlaxUNet2DConditionModel is a conditional 2D UNet model that takes in a noisy sample, conditional state, and a
360
+ timestep and returns sample shaped output.
361
+
362
+ This model inherits from [`FlaxModelMixin`]. Check the superclass documentation for the generic methods the library
363
+ implements for all the models (such as downloading or saving, etc.)
364
+
365
+ Also, this model is a Flax Linen [flax.linen.Module](https://flax.readthedocs.io/en/latest/flax.linen.html#module)
366
+ subclass. Use it as a regular Flax linen Module and refer to the Flax documentation for all matter related to
367
+ general usage and behavior.
368
+
369
+ Finally, this model supports inherent JAX features such as:
370
+ - [Just-In-Time (JIT) compilation](https://jax.readthedocs.io/en/latest/jax.html#just-in-time-compilation-jit)
371
+ - [Automatic Differentiation](https://jax.readthedocs.io/en/latest/jax.html#automatic-differentiation)
372
+ - [Vectorization](https://jax.readthedocs.io/en/latest/jax.html#vectorization-vmap)
373
+ - [Parallelization](https://jax.readthedocs.io/en/latest/jax.html#parallelization-pmap)
374
+
375
+ Parameters:
376
+ sample_size (`int`, *optional*):
377
+ The size of the input sample.
378
+ in_channels (`int`, *optional*, defaults to 4):
379
+ The number of channels in the input sample.
380
+ out_channels (`int`, *optional*, defaults to 4):
381
+ The number of channels in the output.
382
+ down_block_types (`Tuple[str]`, *optional*, defaults to `("CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D")`):
383
+ The tuple of downsample blocks to use. The corresponding class names will be: "FlaxCrossAttnDownBlock2D",
384
+ "FlaxCrossAttnDownBlock2D", "FlaxCrossAttnDownBlock2D", "FlaxDownBlock2D"
385
+ up_block_types (`Tuple[str]`, *optional*, defaults to `("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D",)`):
386
+ The tuple of upsample blocks to use. The corresponding class names will be: "FlaxUpBlock2D",
387
+ "FlaxCrossAttnUpBlock2D", "FlaxCrossAttnUpBlock2D", "FlaxCrossAttnUpBlock2D"
388
+ block_out_channels (`Tuple[int]`, *optional*, defaults to `(320, 640, 1280, 1280)`):
389
+ The tuple of output channels for each block.
390
+ layers_per_block (`int`, *optional*, defaults to 2):
391
+ The number of layers per block.
392
+ attention_head_dim (`int` or `Tuple[int]`, *optional*, defaults to 8):
393
+ The dimension of the attention heads.
394
+ cross_attention_dim (`int`, *optional*, defaults to 768):
395
+ The dimension of the cross attention features.
396
+ dropout (`float`, *optional*, defaults to 0):
397
+ Dropout probability for down, up and bottleneck blocks.
398
+ flip_sin_to_cos (`bool`, *optional*, defaults to `True`):
399
+ Whether to flip the sin to cos in the time embedding.
400
+ freq_shift (`int`, *optional*, defaults to 0): The frequency shift to apply to the time embedding.
401
+ use_memory_efficient_attention (`bool`, *optional*, defaults to `False`):
402
+ enable memory efficient attention https://arxiv.org/abs/2112.05682
403
+
404
+ """
405
+
406
+ sample_size: int = 32
407
+ in_channels: int = 4
408
+ out_channels: int = 4
409
+ down_block_types: Tuple[str] = (
410
+ "CrossAttnDownBlock2D",
411
+ "CrossAttnDownBlock2D",
412
+ "CrossAttnDownBlock2D",
413
+ "DownBlock2D",
414
+ )
415
+ up_block_types: Tuple[str] = ("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D")
416
+ only_cross_attention: Union[bool, Tuple[bool]] = False
417
+ block_out_channels: Tuple[int] = (320, 640, 1280, 1280)
418
+ layers_per_block: int = 2
419
+ attention_head_dim: Union[int, Tuple[int]] = 8
420
+ cross_attention_dim: int = 1280
421
+ dropout: float = 0.0
422
+ use_linear_projection: bool = False
423
+ dtype: jnp.dtype = jnp.float16
424
+ flip_sin_to_cos: bool = True
425
+ freq_shift: int = 0
426
+ use_memory_efficient_attention: bool = False
427
+
428
+ def init_weights(self, rng: jax.random.KeyArray) -> FrozenDict:
429
+ # init input tensors
430
+ sample_shape = (1, self.in_channels, self.sample_size, self.sample_size)
431
+ sample = jnp.zeros(sample_shape, dtype=self.dtype)
432
+ timesteps = jnp.ones((1,), dtype=jnp.int32)
433
+ encoder_hidden_states = jnp.zeros((1, 1, self.cross_attention_dim), dtype=self.dtype)
434
+
435
+ params_rng, dropout_rng = jax.random.split(rng)
436
+ rngs = {"params": params_rng, "dropout": dropout_rng}
437
+
438
+ return self.init(rngs, sample, timesteps, encoder_hidden_states)["params"]
439
+
440
+ def setup(self):
441
+ block_out_channels = self.block_out_channels
442
+ time_embed_dim = block_out_channels[0] * 4
443
+
444
+ # input
445
+ self.conv_in = nn.Conv(
446
+ block_out_channels[0],
447
+ kernel_size=(3, 3),
448
+ strides=(1, 1),
449
+ padding=((1, 1), (1, 1)),
450
+ dtype=self.dtype,
451
+ )
452
+
453
+ # time
454
+ self.time_proj = FlaxTimesteps(
455
+ block_out_channels[0], flip_sin_to_cos=self.flip_sin_to_cos, freq_shift=self.config.freq_shift
456
+ )
457
+ self.time_embedding = FlaxTimestepEmbedding(time_embed_dim, dtype=self.dtype)
458
+
459
+ only_cross_attention = self.only_cross_attention
460
+ if isinstance(only_cross_attention, bool):
461
+ only_cross_attention = (only_cross_attention,) * len(self.down_block_types)
462
+
463
+ attention_head_dim = self.attention_head_dim
464
+ if isinstance(attention_head_dim, int):
465
+ attention_head_dim = (attention_head_dim,) * len(self.down_block_types)
466
+
467
+ # #frame positional embedding
468
+ # self.frame_pe = LoRAPositionalEncoding(self.cross_attention_dim)
469
+
470
+ # down
471
+ down_blocks = []
472
+ output_channel = block_out_channels[0]
473
+ for i, down_block_type in enumerate(self.down_block_types):
474
+ input_channel = output_channel
475
+ output_channel = block_out_channels[i]
476
+ is_final_block = i == len(block_out_channels) - 1
477
+
478
+ if down_block_type == "CrossAttnDownBlock2D":
479
+ down_block = FlaxLoRACrossAttnDownBlock2D(
480
+ in_channels=input_channel,
481
+ out_channels=output_channel,
482
+ dropout=self.dropout,
483
+ num_layers=self.layers_per_block,
484
+ attn_num_head_channels=attention_head_dim[i],
485
+ add_downsample=not is_final_block,
486
+ use_linear_projection=self.use_linear_projection,
487
+ only_cross_attention=only_cross_attention[i],
488
+ use_memory_efficient_attention=self.use_memory_efficient_attention,
489
+ dtype=self.dtype,
490
+ )
491
+ else:
492
+ down_block = FlaxDownBlock2D(
493
+ in_channels=input_channel,
494
+ out_channels=output_channel,
495
+ dropout=self.dropout,
496
+ num_layers=self.layers_per_block,
497
+ add_downsample=not is_final_block,
498
+ dtype=self.dtype,
499
+ )
500
+
501
+ down_blocks.append(down_block)
502
+ self.down_blocks = down_blocks
503
+
504
+ # mid
505
+ self.mid_block = FlaxLoRAUNetCrossAttnMidBlock2D(
506
+ in_channels=block_out_channels[-1],
507
+ dropout=self.dropout,
508
+ attn_num_head_channels=attention_head_dim[-1],
509
+ use_linear_projection=self.use_linear_projection,
510
+ use_memory_efficient_attention=self.use_memory_efficient_attention,
511
+ dtype=self.dtype,
512
+ )
513
+
514
+ # up
515
+ up_blocks = []
516
+ reversed_block_out_channels = list(reversed(block_out_channels))
517
+ reversed_attention_head_dim = list(reversed(attention_head_dim))
518
+ only_cross_attention = list(reversed(only_cross_attention))
519
+ output_channel = reversed_block_out_channels[0]
520
+ for i, up_block_type in enumerate(self.up_block_types):
521
+ prev_output_channel = output_channel
522
+ output_channel = reversed_block_out_channels[i]
523
+ input_channel = reversed_block_out_channels[min(i + 1, len(block_out_channels) - 1)]
524
+
525
+ is_final_block = i == len(block_out_channels) - 1
526
+
527
+ if up_block_type == "CrossAttnUpBlock2D":
528
+ up_block = FlaxLoRACrossAttnUpBlock2D(
529
+ in_channels=input_channel,
530
+ out_channels=output_channel,
531
+ prev_output_channel=prev_output_channel,
532
+ num_layers=self.layers_per_block + 1,
533
+ attn_num_head_channels=reversed_attention_head_dim[i],
534
+ add_upsample=not is_final_block,
535
+ dropout=self.dropout,
536
+ use_linear_projection=self.use_linear_projection,
537
+ only_cross_attention=only_cross_attention[i],
538
+ use_memory_efficient_attention=self.use_memory_efficient_attention,
539
+ dtype=self.dtype,
540
+ )
541
+ else:
542
+ up_block = FlaxUpBlock2D(
543
+ in_channels=input_channel,
544
+ out_channels=output_channel,
545
+ prev_output_channel=prev_output_channel,
546
+ num_layers=self.layers_per_block + 1,
547
+ add_upsample=not is_final_block,
548
+ dropout=self.dropout,
549
+ dtype=self.dtype,
550
+ )
551
+
552
+ up_blocks.append(up_block)
553
+ prev_output_channel = output_channel
554
+ self.up_blocks = up_blocks
555
+
556
+ # out
557
+ self.conv_norm_out = nn.GroupNorm(num_groups=32, epsilon=1e-5)
558
+ self.conv_out = nn.Conv(
559
+ self.out_channels,
560
+ kernel_size=(3, 3),
561
+ strides=(1, 1),
562
+ padding=((1, 1), (1, 1)),
563
+ dtype=self.dtype,
564
+ )
565
+
566
+ def __call__(
567
+ self,
568
+ sample,
569
+ timesteps,
570
+ encoder_hidden_states,
571
+ down_block_additional_residuals=None,
572
+ mid_block_additional_residual=None,
573
+ return_dict: bool = True,
574
+ train: bool = False,
575
+ scale: float = 1.,
576
+ ) -> Union[FlaxUNet2DConditionOutput, Tuple]:
577
+ r"""
578
+ Args:
579
+ sample (`jnp.ndarray`): (batch, channel, height, width) noisy inputs tensor
580
+ timestep (`jnp.ndarray` or `float` or `int`): timesteps
581
+ encoder_hidden_states (`jnp.ndarray`): (batch_size, sequence_length, hidden_size) encoder hidden states
582
+ return_dict (`bool`, *optional*, defaults to `True`):
583
+ Whether or not to return a [`models.unet_2d_condition_flax.FlaxUNet2DConditionOutput`] instead of a
584
+ plain tuple.
585
+ train (`bool`, *optional*, defaults to `False`):
586
+ Use deterministic functions and disable dropout when not training.
587
+
588
+ Returns:
589
+ [`~models.unet_2d_condition_flax.FlaxUNet2DConditionOutput`] or `tuple`:
590
+ [`~models.unet_2d_condition_flax.FlaxUNet2DConditionOutput`] if `return_dict` is True, otherwise a `tuple`.
591
+ When returning a tuple, the first element is the sample tensor.
592
+ """
593
+ # 1. time
594
+ if not isinstance(timesteps, jnp.ndarray):
595
+ timesteps = jnp.array([timesteps], dtype=jnp.int32)
596
+ elif isinstance(timesteps, jnp.ndarray) and len(timesteps.shape) == 0:
597
+ timesteps = timesteps.astype(dtype=jnp.float32)
598
+ timesteps = jnp.expand_dims(timesteps, 0)
599
+
600
+ t_emb = self.time_proj(timesteps)
601
+ t_emb = self.time_embedding(t_emb)
602
+
603
+ # 2. pre-process
604
+ sample = jnp.transpose(sample, (0, 2, 3, 1))
605
+ sample = self.conv_in(sample)
606
+
607
+ # 3. down
608
+ down_block_res_samples = (sample,)
609
+ for down_block in self.down_blocks:
610
+ if isinstance(down_block, FlaxLoRACrossAttnDownBlock2D):
611
+ sample, res_samples = down_block(sample, t_emb, encoder_hidden_states, deterministic=not train, scale=scale)
612
+ else:
613
+ sample, res_samples = down_block(sample, t_emb, deterministic=not train)
614
+ down_block_res_samples += res_samples
615
+
616
+ if down_block_additional_residuals is not None:
617
+ new_down_block_res_samples = ()
618
+
619
+ for down_block_res_sample, down_block_additional_residual in zip(
620
+ down_block_res_samples, down_block_additional_residuals
621
+ ):
622
+ down_block_res_sample += down_block_additional_residual
623
+ new_down_block_res_samples += (down_block_res_sample,)
624
+
625
+ down_block_res_samples = new_down_block_res_samples
626
+
627
+ # if encoder_hidden_states is not None:
628
+ # #adding frame positional encoding
629
+ # encoder_hidden_states = self.frame_pe(encoder_hidden_states, scale=scale)
630
+
631
+ # 4. mid
632
+ sample = self.mid_block(sample, t_emb, encoder_hidden_states, deterministic=not train, scale=scale)
633
+
634
+ if mid_block_additional_residual is not None:
635
+ sample += mid_block_additional_residual
636
+
637
+ # 5. up
638
+ for up_block in self.up_blocks:
639
+ res_samples = down_block_res_samples[-(self.layers_per_block + 1) :]
640
+ down_block_res_samples = down_block_res_samples[: -(self.layers_per_block + 1)]
641
+ if isinstance(up_block, FlaxLoRACrossAttnUpBlock2D):
642
  sample = up_block(
643
  sample,
644
  temb=t_emb,
645
+ encoder_hidden_states=encoder_hidden_states,
646
  res_hidden_states_tuple=res_samples,
647
  deterministic=not train,
648
+ scale=scale,
649
  )
650
+ else:
651
+ sample = up_block(sample, temb=t_emb, res_hidden_states_tuple=res_samples, deterministic=not train)
652
 
653
  # 6. post-process
654
  sample = self.conv_norm_out(sample)
 
659
  if not return_dict:
660
  return (sample,)
661
 
662
+ return FlaxUNet2DConditionOutput(sample=sample)
text_to_animation/pipelines/text_to_video_pipeline_flax.py CHANGED
@@ -11,11 +11,7 @@ from flax.training.common_utils import shard
11
  from PIL import Image
12
  from transformers import CLIPFeatureExtractor, CLIPTokenizer, FlaxCLIPTextModel
13
  from einops import rearrange, repeat
14
- from diffusers.models import (
15
- FlaxAutoencoderKL,
16
- FlaxControlNetModel,
17
- FlaxUNet2DConditionModel,
18
- )
19
  from diffusers.schedulers import (
20
  FlaxDDIMScheduler,
21
  FlaxDPMSolverMultistepScheduler,
@@ -25,24 +21,21 @@ from diffusers.schedulers import (
25
  from diffusers.utils import PIL_INTERPOLATION, logging, replace_example_docstring
26
  from diffusers.pipelines.pipeline_flax_utils import FlaxDiffusionPipeline
27
  from diffusers.pipelines.stable_diffusion import FlaxStableDiffusionPipelineOutput
28
- from diffusers.pipelines.stable_diffusion.safety_checker_flax import (
29
- FlaxStableDiffusionSafetyChecker,
30
- )
31
-
32
  logger = logging.get_logger(__name__) # pylint: disable=invalid-name
33
  """
34
  Text2Video-Zero:
35
  - Inputs: Prompt, Pose Control via mp4/gif, First Frame (?)
36
  - JAX implementation
37
  - 3DUnet to replace 2DUnetConditional
38
- """
39
 
 
40
 
41
  def replicate_devices(array):
42
  return jnp.expand_dims(array, 0).repeat(jax.device_count(), 0)
43
 
44
 
45
- DEBUG = False # Set to True to use python for loop instead of jax.fori_loop for easier debugging
46
 
47
  EXAMPLE_DOC_STRING = """
48
  Examples:
@@ -101,8 +94,6 @@ EXAMPLE_DOC_STRING = """
101
  >>> output_images.save("generated_image.png")
102
  ```
103
  """
104
-
105
-
106
  class FlaxTextToVideoPipeline(FlaxDiffusionPipeline):
107
  def __init__(
108
  self,
@@ -113,10 +104,7 @@ class FlaxTextToVideoPipeline(FlaxDiffusionPipeline):
113
  unet_vanilla,
114
  controlnet,
115
  scheduler: Union[
116
- FlaxDDIMScheduler,
117
- FlaxPNDMScheduler,
118
- FlaxLMSDiscreteScheduler,
119
- FlaxDPMSolverMultistepScheduler,
120
  ],
121
  safety_checker: FlaxStableDiffusionSafetyChecker,
122
  feature_extractor: CLIPFeatureExtractor,
@@ -154,50 +142,30 @@ class FlaxTextToVideoPipeline(FlaxDiffusionPipeline):
154
  else:
155
  eps = jax.random.normal(prng, x0.shape, dtype=text_embeddings.dtype)
156
  alpha_vec = jnp.prod(params["scheduler"].common.alphas[t0:tMax])
157
- xt = jnp.sqrt(alpha_vec) * x0 + jnp.sqrt(1 - alpha_vec) * eps
 
158
  return xt
159
-
160
- def DDIM_backward(
161
- self,
162
- params,
163
- num_inference_steps,
164
- timesteps,
165
- skip_t,
166
- t0,
167
- t1,
168
- do_classifier_free_guidance,
169
- text_embeddings,
170
- latents_local,
171
- guidance_scale,
172
- controlnet_image=None,
173
- controlnet_conditioning_scale=None,
174
- ):
175
- scheduler_state = self.scheduler.set_timesteps(
176
- params["scheduler"], num_inference_steps
177
- )
178
  f = latents_local.shape[2]
179
  latents_local = rearrange(latents_local, "b c f h w -> (b f) c h w")
180
  latents = latents_local.copy()
181
  x_t0_1 = None
182
  x_t1_1 = None
183
- max_timestep = len(timesteps) - 1
184
  timesteps = jnp.array(timesteps)
185
-
186
  def while_body(args):
187
  step, latents, x_t0_1, x_t1_1, scheduler_state = args
188
  t = jnp.array(scheduler_state.timesteps, dtype=jnp.int32)[step]
189
- latent_model_input = (
190
- jnp.concatenate([latents] * 2)
191
- if do_classifier_free_guidance
192
- else latents
193
- )
194
  latent_model_input = self.scheduler.scale_model_input(
195
  scheduler_state, latent_model_input, timestep=t
196
  )
197
  f = latents.shape[0]
198
- te = jnp.stack(
199
- [text_embeddings[0, :, :]] * f + [text_embeddings[-1, :, :]] * f
200
- )
201
  timestep = jnp.broadcast_to(t, latent_model_input.shape[0])
202
  if controlnet_image is not None:
203
  down_block_res_samples, mid_block_res_sample = self.controlnet.apply(
@@ -224,43 +192,32 @@ class FlaxTextToVideoPipeline(FlaxDiffusionPipeline):
224
  jnp.array(latent_model_input),
225
  jnp.array(timestep, dtype=jnp.int32),
226
  encoder_hidden_states=te,
227
- ).sample
228
  # perform guidance
229
  if do_classifier_free_guidance:
230
  noise_pred_uncond, noise_pred_text = jnp.split(noise_pred, 2, axis=0)
231
- noise_pred = noise_pred_uncond + guidance_scale * (
232
- noise_pred_text - noise_pred_uncond
233
- )
234
  # compute the previous noisy sample x_t -> x_t-1
235
- latents, scheduler_state = self.scheduler.step(
236
- scheduler_state, noise_pred, t, latents
237
- ).to_tuple()
238
- x_t0_1 = jax.lax.select(
239
- (step < max_timestep - 1) & (timesteps[step + 1] == t0), latents, x_t0_1
240
- )
241
- x_t1_1 = jax.lax.select(
242
- (step < max_timestep - 1) & (timesteps[step + 1] == t1), latents, x_t1_1
243
- )
244
  return (step + 1, latents, x_t0_1, x_t1_1, scheduler_state)
245
-
246
  latents_shape = latents.shape
247
  x_t0_1, x_t1_1 = jnp.zeros(latents_shape), jnp.zeros(latents_shape)
248
 
249
  def cond_fun(arg):
250
  step, latents, x_t0_1, x_t1_1, scheduler_state = arg
251
  return (step < skip_t) & (step < num_inference_steps)
252
-
253
  if DEBUG:
254
  step = 0
255
  while cond_fun((step, latents, x_t0_1, x_t1_1)):
256
- step, latents, x_t0_1, x_t1_1, scheduler_state = while_body(
257
- (step, latents, x_t0_1, x_t1_1, scheduler_state)
258
- )
259
  step = step + 1
260
  else:
261
- _, latents, x_t0_1, x_t1_1, scheduler_state = jax.lax.while_loop(
262
- cond_fun, while_body, (0, latents, x_t0_1, x_t1_1, scheduler_state)
263
- )
264
  latents = rearrange(latents, "(b f) c h w -> b c f h w", f=f)
265
  res = {"x0": latents.copy()}
266
  if x_t0_1 is not None:
@@ -270,7 +227,7 @@ class FlaxTextToVideoPipeline(FlaxDiffusionPipeline):
270
  x_t1_1 = rearrange(x_t1_1, "(b f) c h w -> b c f h w", f=f)
271
  res["x_t1_1"] = x_t1_1.copy()
272
  return res
273
-
274
  def warp_latents_independently(self, latents, reference_flow):
275
  _, _, H, W = reference_flow.shape
276
  b, _, f, h, w = latents.shape
@@ -281,10 +238,10 @@ class FlaxTextToVideoPipeline(FlaxDiffusionPipeline):
281
  coords_t0 = coords_t0.at[:, 1].set(coords_t0[:, 1] * h / H)
282
  f, c, _, _ = coords_t0.shape
283
  coords_t0 = jax.image.resize(coords_t0, (f, c, h, w), "linear")
284
- coords_t0 = rearrange(coords_t0, "f c h w -> f h w c")
285
- latents_0 = rearrange(latents[0], "c f h w -> f c h w")
286
  warped = grid_sample(latents_0, coords_t0, "mirror")
287
- warped = rearrange(warped, "(b f) c h w -> b c f h w", f=f)
288
  return warped
289
 
290
  def warp_vid_independently(self, vid, reference_flow):
@@ -296,173 +253,75 @@ class FlaxTextToVideoPipeline(FlaxDiffusionPipeline):
296
  coords_t0 = coords_t0.at[:, 1].set(coords_t0[:, 1] * h / H)
297
  f, c, _, _ = coords_t0.shape
298
  coords_t0 = jax.image.resize(coords_t0, (f, c, h, w), "linear")
299
- coords_t0 = rearrange(coords_t0, "f c h w -> f h w c")
300
  # latents_0 = rearrange(vid, 'c f h w -> f c h w')
301
  warped = grid_sample(vid, coords_t0, "zeropad")
302
  # warped = rearrange(warped, 'f c h w -> b c f h w', f=f)
303
  return warped
304
-
305
- def create_motion_field(
306
- self,
307
- motion_field_strength_x,
308
- motion_field_strength_y,
309
- frame_ids,
310
- video_length,
311
- latents,
312
- ):
313
- reference_flow = jnp.zeros((video_length - 1, 2, 512, 512), dtype=latents.dtype)
314
  for fr_idx, frame_id in enumerate(frame_ids):
315
- reference_flow = reference_flow.at[fr_idx, 0, :, :].set(
316
- motion_field_strength_x * (frame_id)
317
- )
318
- reference_flow = reference_flow.at[fr_idx, 1, :, :].set(
319
- motion_field_strength_y * (frame_id)
320
- )
321
  return reference_flow
322
-
323
- def create_motion_field_and_warp_latents(
324
- self,
325
- motion_field_strength_x,
326
- motion_field_strength_y,
327
- frame_ids,
328
- video_length,
329
- latents,
330
- ):
331
- motion_field = self.create_motion_field(
332
- motion_field_strength_x=motion_field_strength_x,
333
- motion_field_strength_y=motion_field_strength_y,
334
- latents=latents,
335
- video_length=video_length,
336
- frame_ids=frame_ids,
337
- )
338
  for idx, latent in enumerate(latents):
339
- latents = latents.at[idx].set(
340
- self.warp_latents_independently(latent[None], motion_field)[0]
341
- )
342
  return motion_field, latents
343
 
344
- def text_to_video_zero(
345
- self,
346
- params,
347
- prng,
348
- text_embeddings,
349
- video_length: Optional[int],
350
- do_classifier_free_guidance=True,
351
- height: Optional[int] = None,
352
- width: Optional[int] = None,
353
- num_inference_steps: int = 50,
354
- guidance_scale: float = 7.5,
355
- num_videos_per_prompt: Optional[int] = 1,
356
- xT=None,
357
- smooth_bg_strength: float = 0.0,
358
- motion_field_strength_x: float = 12,
359
- motion_field_strength_y: float = 12,
360
- t0: int = 44,
361
- t1: int = 47,
362
- controlnet_image=None,
363
- controlnet_conditioning_scale=0,
364
- ):
365
  frame_ids = list(range(video_length))
366
  # Prepare timesteps
367
- params["scheduler"] = self.scheduler.set_timesteps(
368
- params["scheduler"], num_inference_steps
369
- )
370
  timesteps = params["scheduler"].timesteps
371
  # Prepare latent variables
372
  num_channels_latents = self.unet.in_channels
373
  batch_size = 1
374
- xT = prepare_latents(
375
- params,
376
- prng,
377
- batch_size * num_videos_per_prompt,
378
- num_channels_latents,
379
- height,
380
- width,
381
- self.vae_scale_factor,
382
- xT,
383
- )
384
 
385
- timesteps_ddpm = [
386
- 981,
387
- 961,
388
- 941,
389
- 921,
390
- 901,
391
- 881,
392
- 861,
393
- 841,
394
- 821,
395
- 801,
396
- 781,
397
- 761,
398
- 741,
399
- 721,
400
- 701,
401
- 681,
402
- 661,
403
- 641,
404
- 621,
405
- 601,
406
- 581,
407
- 561,
408
- 541,
409
- 521,
410
- 501,
411
- 481,
412
- 461,
413
- 441,
414
- 421,
415
- 401,
416
- 381,
417
- 361,
418
- 341,
419
- 321,
420
- 301,
421
- 281,
422
- 261,
423
- 241,
424
- 221,
425
- 201,
426
- 181,
427
- 161,
428
- 141,
429
- 121,
430
- 101,
431
- 81,
432
- 61,
433
- 41,
434
- 21,
435
- 1,
436
- ]
437
  timesteps_ddpm.reverse()
438
  t0 = timesteps_ddpm[t0]
439
  t1 = timesteps_ddpm[t1]
440
  x_t1_1 = None
441
 
442
  # Denoising loop
443
- shape = (
444
- batch_size,
445
- num_channels_latents,
446
- 1,
447
- height // self.vae.scaling_factor,
448
- width // self.vae.scaling_factor,
449
- )
450
 
451
  # perform ∆t backward steps by stable diffusion
452
- ddim_res = self.DDIM_backward(
453
- params,
454
- num_inference_steps=num_inference_steps,
455
- timesteps=timesteps,
456
- skip_t=1000,
457
- t0=t0,
458
- t1=t1,
459
- do_classifier_free_guidance=do_classifier_free_guidance,
460
- text_embeddings=text_embeddings,
461
- latents_local=xT,
462
- guidance_scale=guidance_scale,
463
- controlnet_image=jnp.stack([controlnet_image[0]] * 2),
464
- controlnet_conditioning_scale=controlnet_conditioning_scale,
465
- )
466
  x0 = ddim_res["x0"]
467
 
468
  # apply warping functions
@@ -470,89 +329,46 @@ class FlaxTextToVideoPipeline(FlaxDiffusionPipeline):
470
  x_t0_1 = ddim_res["x_t0_1"]
471
  if "x_t1_1" in ddim_res:
472
  x_t1_1 = ddim_res["x_t1_1"]
473
- x_t0_k = x_t0_1[:, :, :1, :, :].repeat(video_length - 1, 2)
474
  reference_flow, x_t0_k = self.create_motion_field_and_warp_latents(
475
- motion_field_strength_x=motion_field_strength_x,
476
- motion_field_strength_y=motion_field_strength_y,
477
- latents=x_t0_k,
478
- video_length=video_length,
479
- frame_ids=frame_ids[1:],
480
- )
481
  # assuming t0=t1=1000, if t0 = 1000
482
 
483
  # DDPM forward for more motion freedom
484
- ddpm_fwd = partial(
485
- self.DDPM_forward,
486
- params=params,
487
- prng=prng,
488
- x0=x_t0_k,
489
- t0=t0,
490
- tMax=t1,
491
- shape=shape,
492
- text_embeddings=text_embeddings,
493
  )
494
- x_t1_k = jax.lax.cond(t1 > t0, ddpm_fwd, lambda: x_t0_k)
495
  x_t1 = jnp.concatenate([x_t1_1, x_t1_k], axis=2)
496
 
497
  # backward stepts by stable diffusion
498
 
499
- # warp the controlnet image following the same flow defined for latent
500
  controlnet_video = controlnet_image[:video_length]
501
- controlnet_video = controlnet_video.at[1:].set(
502
- self.warp_vid_independently(controlnet_video[1:], reference_flow)
503
- )
504
- controlnet_image = jnp.concatenate([controlnet_video] * 2)
505
  smooth_bg = True
506
 
507
  if smooth_bg:
508
- # latent shape: "b c f h w"
509
- M_FG = repeat(
510
- get_mask_pose(controlnet_video),
511
- "f h w -> b c f h w",
512
- c=x_t1.shape[1],
513
- b=batch_size,
514
- )
515
- initial_bg = repeat(
516
- x_t1[:, :, 0] * (1 - M_FG[:, :, 0]),
517
- "b c h w -> b c f h w",
518
- f=video_length - 1,
519
- )
520
- # warp the controlnet image following the same flow defined for latent #f c h w
521
- initial_bg_warped = self.warp_latents_independently(
522
- initial_bg, reference_flow
523
- )
524
- bgs = x_t1[:, :, 1:] * (1 - M_FG[:, :, 1:]) # initial background
525
- initial_mask_warped = 1 - self.warp_latents_independently(
526
- repeat(M_FG[:, :, 0], "b c h w -> b c f h w", f=video_length - 1),
527
- reference_flow,
528
- )
529
  # initial_mask_warped = 1 - warp_vid_independently(repeat(M_FG[:,:,0], "b c h w -> (b f) c h w", f = video_length-1), reference_flow)
530
  # initial_mask_warped = rearrange(initial_mask_warped, "(b f) c h w -> b c f h w", b=batch_size)
531
- mask = (1 - M_FG[:, :, 1:]) * initial_mask_warped
532
- x_t1 = x_t1.at[:, :, 1:].set(
533
- (1 - mask) * x_t1[:, :, 1:]
534
- + mask
535
- * (
536
- initial_bg_warped * smooth_bg_strength
537
- + (1 - smooth_bg_strength) * bgs
538
- )
539
- )
540
-
541
- ddim_res = self.DDIM_backward(
542
- params,
543
- num_inference_steps=num_inference_steps,
544
- timesteps=timesteps,
545
- skip_t=t1,
546
- t0=-1,
547
- t1=-1,
548
- do_classifier_free_guidance=do_classifier_free_guidance,
549
- text_embeddings=text_embeddings,
550
- latents_local=x_t1,
551
- guidance_scale=guidance_scale,
552
- controlnet_image=controlnet_image,
553
- controlnet_conditioning_scale=controlnet_conditioning_scale,
554
- )
555
-
556
  x0 = ddim_res["x0"]
557
  del ddim_res
558
  del x_t1
@@ -560,42 +376,25 @@ class FlaxTextToVideoPipeline(FlaxDiffusionPipeline):
560
  del x_t1_k
561
  return x0
562
 
563
- def denoise_latent(
564
- self,
565
- params,
566
- num_inference_steps,
567
- timesteps,
568
- do_classifier_free_guidance,
569
- text_embeddings,
570
- latents,
571
- guidance_scale,
572
- controlnet_image=None,
573
- controlnet_conditioning_scale=None,
574
- ):
575
- scheduler_state = self.scheduler.set_timesteps(
576
- params["scheduler"], num_inference_steps
577
- )
578
  # f = latents_local.shape[2]
579
  # latents_local = rearrange(latents_local, "b c f h w -> (b f) c h w")
580
 
581
- max_timestep = len(timesteps) - 1
582
  timesteps = jnp.array(timesteps)
583
-
584
  def while_body(args):
585
  step, latents, scheduler_state = args
586
  t = jnp.array(scheduler_state.timesteps, dtype=jnp.int32)[step]
587
- latent_model_input = (
588
- jnp.concatenate([latents] * 2)
589
- if do_classifier_free_guidance
590
- else latents
591
- )
592
  latent_model_input = self.scheduler.scale_model_input(
593
  scheduler_state, latent_model_input, timestep=t
594
  )
595
  f = latents.shape[0]
596
- te = jnp.stack(
597
- [text_embeddings[0, :, :]] * f + [text_embeddings[-1, :, :]] * f
598
- )
599
  timestep = jnp.broadcast_to(t, latent_model_input.shape[0])
600
  if controlnet_image is not None:
601
  down_block_res_samples, mid_block_res_sample = self.controlnet.apply(
@@ -622,215 +421,104 @@ class FlaxTextToVideoPipeline(FlaxDiffusionPipeline):
622
  jnp.array(latent_model_input),
623
  jnp.array(timestep, dtype=jnp.int32),
624
  encoder_hidden_states=te,
625
- ).sample
626
  # perform guidance
627
  if do_classifier_free_guidance:
628
  noise_pred_uncond, noise_pred_text = jnp.split(noise_pred, 2, axis=0)
629
- noise_pred = noise_pred_uncond + guidance_scale * (
630
- noise_pred_text - noise_pred_uncond
631
- )
632
  # compute the previous noisy sample x_t -> x_t-1
633
- latents, scheduler_state = self.scheduler.step(
634
- scheduler_state, noise_pred, t, latents
635
- ).to_tuple()
636
  return (step + 1, latents, scheduler_state)
637
-
638
  def cond_fun(arg):
639
  step, latents, scheduler_state = arg
640
- return step < num_inference_steps
641
-
642
  if DEBUG:
643
  step = 0
644
  while cond_fun((step, latents, scheduler_state)):
645
- step, latents, scheduler_state = while_body(
646
- (step, latents, scheduler_state)
647
- )
648
  step = step + 1
649
  else:
650
- _, latents, scheduler_state = jax.lax.while_loop(
651
- cond_fun, while_body, (0, latents, scheduler_state)
652
- )
653
  # latents = rearrange(latents, "(b f) c h w -> b c f h w", f=f)
654
  return latents
655
 
656
- @partial(jax.jit, static_argnums=(0, 1))
657
- def _generate_starting_frames(
658
- self,
659
- num_inference_steps,
660
- params,
661
- timesteps,
662
- text_embeddings,
663
- latents,
664
- guidance_scale,
665
- controlnet_image,
666
- controlnet_conditioning_scale,
667
- ):
668
- # perform ∆t backward steps by stable diffusion
669
- # delta_t_diffusion = jax.vmap(lambda latent : self.DDIM_backward(params, num_inference_steps=num_inference_steps, timesteps=timesteps, skip_t=1000, t0=t0, t1=t1, do_classifier_free_guidance=do_classifier_free_guidance,
670
- # text_embeddings=text_embeddings, latents_local=latent, guidance_scale=guidance_scale,
671
- # controlnet_image=controlnet_image, controlnet_conditioning_scale=controlnet_conditioning_scale))
672
- # ddim_res = delta_t_diffusion(latents)
673
- # latents = ddim_res["x0"] #output is i b c f h w
674
-
675
- # DDPM forward for more motion freedom
676
- # ddpm_fwd = jax.vmap(lambda prng, latent: self.DDPM_forward(params=params, prng=prng, x0=latent, t0=t0,
677
- # tMax=t1, shape=shape, text_embeddings=text_embeddings))
678
- # latents = ddpm_fwd(stacked_prngs, latents)
679
- # main backward diffusion
680
- # denoise_first_frame = lambda latent : self.DDIM_backward(params, num_inference_steps=num_inference_steps, timesteps=timesteps, skip_t=100000, t0=-1, t1=-1, do_classifier_free_guidance=do_classifier_free_guidance,
681
- # text_embeddings=text_embeddings, latents_local=latent, guidance_scale=guidance_scale,
682
- # controlnet_image=controlnet_image, controlnet_conditioning_scale=controlnet_conditioning_scale, use_vanilla=True)
683
- # latents = rearrange(latents, 'i b c f h w -> (i b) c f h w')
684
- # ddim_res = denoise_first_frame(latents)
685
- latents = self.denoise_latent(
686
- params,
687
- num_inference_steps=num_inference_steps,
688
- timesteps=timesteps,
689
- do_classifier_free_guidance=True,
690
- text_embeddings=text_embeddings,
691
- latents=latents,
692
- guidance_scale=guidance_scale,
693
- controlnet_image=controlnet_image,
694
- controlnet_conditioning_scale=controlnet_conditioning_scale,
695
- )
696
- # latents = rearrange(ddim_res["x0"], 'i b c f h w -> (i b) c f h w') #output is i b c f h w
697
-
698
- # scale and decode the image latents with vae
699
- latents = 1 / self.vae.config.scaling_factor * latents
700
- # latents = rearrange(latents, "b c h w -> (b f) c h w")
701
- imgs = self.vae.apply(
702
- {"params": params["vae"]}, latents, method=self.vae.decode
703
- ).sample
704
- imgs = (imgs / 2 + 0.5).clip(0, 1).transpose(0, 2, 3, 1)
705
- return imgs
706
 
707
- def generate_starting_frames(
708
- self,
709
- params,
710
- prngs: list, # list of prngs for each img
711
- prompt,
712
- neg_prompt,
713
- controlnet_image,
714
- do_classifier_free_guidance=True,
715
- num_inference_steps: int = 50,
716
- guidance_scale: float = 7.5,
717
- t0: int = 44,
718
- t1: int = 47,
719
- controlnet_conditioning_scale=1.0,
720
- ):
721
  height, width = controlnet_image.shape[-2:]
722
  if height % 64 != 0 or width % 64 != 0:
723
- raise ValueError(
724
- f"`height` and `width` have to be divisible by 64 but are {height} and {width}."
725
- )
726
 
727
- shape = (
728
- self.unet.in_channels,
729
- height // self.vae_scale_factor,
730
- width // self.vae_scale_factor,
731
- ) # b c h w
732
  # scale the initial noise by the standard deviation required by the scheduler
733
 
734
- print(
735
- f"Generating {len(prngs)} first frames with prompt {prompt}, for {num_inference_steps} steps. PRNG seeds are: {prngs}"
736
- )
737
 
738
- latents = jnp.stack(
739
- [jax.random.normal(prng, shape) for prng in prngs]
740
- ) # b c h w
741
  latents = latents * params["scheduler"].init_noise_sigma
742
 
743
  timesteps = params["scheduler"].timesteps
744
- timesteps_ddpm = [
745
- 981,
746
- 961,
747
- 941,
748
- 921,
749
- 901,
750
- 881,
751
- 861,
752
- 841,
753
- 821,
754
- 801,
755
- 781,
756
- 761,
757
- 741,
758
- 721,
759
- 701,
760
- 681,
761
- 661,
762
- 641,
763
- 621,
764
- 601,
765
- 581,
766
- 561,
767
- 541,
768
- 521,
769
- 501,
770
- 481,
771
- 461,
772
- 441,
773
- 421,
774
- 401,
775
- 381,
776
- 361,
777
- 341,
778
- 321,
779
- 301,
780
- 281,
781
- 261,
782
- 241,
783
- 221,
784
- 201,
785
- 181,
786
- 161,
787
- 141,
788
- 121,
789
- 101,
790
- 81,
791
- 61,
792
- 41,
793
- 21,
794
- 1,
795
- ]
796
  timesteps_ddpm.reverse()
797
  t0 = timesteps_ddpm[t0]
798
  t1 = timesteps_ddpm[t1]
799
 
800
  # get prompt text embeddings
801
- prompt_ids = self.prepare_text_inputs(prompt)
802
- prompt_embeds = self.text_encoder(prompt_ids, params=params["text_encoder"])[0]
 
 
 
 
 
 
 
 
803
 
804
  # TODO: currently it is assumed `do_classifier_free_guidance = guidance_scale > 1.0`
805
  # implement this conditional `do_classifier_free_guidance = guidance_scale > 1.0`
806
  batch_size = 1
807
  max_length = prompt_ids.shape[-1]
808
  if neg_prompt is None:
809
- uncond_input = self.tokenizer(
810
- [""] * batch_size,
811
- padding="max_length",
812
- max_length=max_length,
813
- return_tensors="np",
814
- ).input_ids
815
  else:
816
  neg_prompt_ids = self.prepare_text_inputs(neg_prompt)
817
- uncond_input = neg_prompt_ids
818
 
819
- negative_prompt_embeds = self.text_encoder(
820
- uncond_input, params=params["text_encoder"]
821
- )[0]
822
- text_embeddings = jnp.concatenate([negative_prompt_embeds, prompt_embeds])
823
- controlnet_image = jnp.stack([controlnet_image[0]] * 2 * len(prngs))
824
- return self._generate_starting_frames(
825
- num_inference_steps,
826
- params,
827
- timesteps,
828
- text_embeddings,
829
- latents,
830
- guidance_scale,
831
- controlnet_image,
832
- controlnet_conditioning_scale,
833
- )
834
 
835
  def generate_video(
836
  self,
@@ -845,8 +533,8 @@ class FlaxTextToVideoPipeline(FlaxDiffusionPipeline):
845
  controlnet_conditioning_scale: Union[float, jnp.array] = 1.0,
846
  return_dict: bool = True,
847
  jit: bool = False,
848
- xT=None,
849
- smooth_bg_strength: float = 0.0,
850
  motion_field_strength_x: float = 3,
851
  motion_field_strength_y: float = 4,
852
  t0: int = 44,
@@ -912,9 +600,7 @@ class FlaxTextToVideoPipeline(FlaxDiffusionPipeline):
912
  if isinstance(controlnet_conditioning_scale, float):
913
  # Convert to a tensor so each device gets a copy. Follow the prompt_ids for
914
  # shape information, as they may be sharded (when `jit` is `True`), or not.
915
- controlnet_conditioning_scale = jnp.array(
916
- [controlnet_conditioning_scale] * prompt_ids.shape[0]
917
- )
918
  if len(prompt_ids.shape) > 2:
919
  # Assume sharded
920
  controlnet_conditioning_scale = controlnet_conditioning_scale[:, None]
@@ -928,9 +614,7 @@ class FlaxTextToVideoPipeline(FlaxDiffusionPipeline):
928
  num_inference_steps,
929
  replicate_devices(guidance_scale),
930
  replicate_devices(latents) if latents is not None else None,
931
- replicate_devices(neg_prompt_ids)
932
- if neg_prompt_ids is not None
933
- else None,
934
  replicate_devices(controlnet_conditioning_scale),
935
  replicate_devices(xT) if xT is not None else None,
936
  replicate_devices(smooth_bg_strength),
@@ -961,12 +645,8 @@ class FlaxTextToVideoPipeline(FlaxDiffusionPipeline):
961
  safety_params = params["safety_checker"]
962
  images_uint8_casted = (images * 255).round().astype("uint8")
963
  num_devices, batch_size = images.shape[:2]
964
- images_uint8_casted = np.asarray(images_uint8_casted).reshape(
965
- num_devices * batch_size, height, width, 3
966
- )
967
- images_uint8_casted, has_nsfw_concept = self._run_safety_checker(
968
- images_uint8_casted, safety_params, jit
969
- )
970
  images = np.asarray(images)
971
  # block images
972
  if any(has_nsfw_concept):
@@ -979,15 +659,11 @@ class FlaxTextToVideoPipeline(FlaxDiffusionPipeline):
979
  has_nsfw_concept = False
980
  if not return_dict:
981
  return (images, has_nsfw_concept)
982
- return FlaxStableDiffusionPipelineOutput(
983
- images=images, nsfw_content_detected=has_nsfw_concept
984
- )
985
 
986
  def prepare_text_inputs(self, prompt: Union[str, List[str]]):
987
  if not isinstance(prompt, (str, list)):
988
- raise ValueError(
989
- f"`prompt` has to be of type `str` or `list` but is {type(prompt)}"
990
- )
991
  text_input = self.tokenizer(
992
  prompt,
993
  padding="max_length",
@@ -996,38 +672,27 @@ class FlaxTextToVideoPipeline(FlaxDiffusionPipeline):
996
  return_tensors="np",
997
  )
998
  return text_input.input_ids
999
-
1000
  def prepare_image_inputs(self, image: Union[Image.Image, List[Image.Image]]):
1001
  if not isinstance(image, (Image.Image, list)):
1002
- raise ValueError(
1003
- f"image has to be of type `PIL.Image.Image` or list but is {type(image)}"
1004
- )
1005
  if isinstance(image, Image.Image):
1006
  image = [image]
1007
- processed_images = jnp.concatenate(
1008
- [preprocess(img, jnp.float32) for img in image]
1009
- )
1010
  return processed_images
1011
-
1012
  def _get_has_nsfw_concepts(self, features, params):
1013
  has_nsfw_concepts = self.safety_checker(features, params)
1014
  return has_nsfw_concepts
1015
-
1016
  def _run_safety_checker(self, images, safety_model_params, jit=False):
1017
  # safety_model_params should already be replicated when jit is True
1018
  pil_images = [Image.fromarray(image) for image in images]
1019
  features = self.feature_extractor(pil_images, return_tensors="np").pixel_values
1020
  if jit:
1021
  features = shard(features)
1022
- has_nsfw_concepts = _p_get_has_nsfw_concepts(
1023
- self, features, safety_model_params
1024
- )
1025
  has_nsfw_concepts = unshard(has_nsfw_concepts)
1026
  safety_model_params = unreplicate(safety_model_params)
1027
  else:
1028
- has_nsfw_concepts = self._get_has_nsfw_concepts(
1029
- features, safety_model_params
1030
- )
1031
  images_was_copied = False
1032
  for idx, has_nsfw_concept in enumerate(has_nsfw_concepts):
1033
  if has_nsfw_concept:
@@ -1041,7 +706,6 @@ class FlaxTextToVideoPipeline(FlaxDiffusionPipeline):
1041
  " instead. Try again with a different prompt and/or seed."
1042
  )
1043
  return images, has_nsfw_concepts
1044
-
1045
  def _generate(
1046
  self,
1047
  prompt_ids: jnp.array,
@@ -1053,8 +717,8 @@ class FlaxTextToVideoPipeline(FlaxDiffusionPipeline):
1053
  latents: Optional[jnp.array] = None,
1054
  neg_prompt_ids: Optional[jnp.array] = None,
1055
  controlnet_conditioning_scale: float = 1.0,
1056
- xT=None,
1057
- smooth_bg_strength: float = 0.0,
1058
  motion_field_strength_x: float = 12,
1059
  motion_field_strength_y: float = 12,
1060
  t0: int = 44,
@@ -1063,9 +727,7 @@ class FlaxTextToVideoPipeline(FlaxDiffusionPipeline):
1063
  height, width = image.shape[-2:]
1064
  video_length = image.shape[0]
1065
  if height % 64 != 0 or width % 64 != 0:
1066
- raise ValueError(
1067
- f"`height` and `width` have to be divisible by 64 but are {height} and {width}."
1068
- )
1069
  # get prompt text embeddings
1070
  prompt_embeds = self.text_encoder(prompt_ids, params=params["text_encoder"])[0]
1071
  # TODO: currently it is assumed `do_classifier_free_guidance = guidance_scale > 1.0`
@@ -1074,47 +736,30 @@ class FlaxTextToVideoPipeline(FlaxDiffusionPipeline):
1074
  max_length = prompt_ids.shape[-1]
1075
  if neg_prompt_ids is None:
1076
  uncond_input = self.tokenizer(
1077
- [""] * batch_size,
1078
- padding="max_length",
1079
- max_length=max_length,
1080
- return_tensors="np",
1081
  ).input_ids
1082
  else:
1083
  uncond_input = neg_prompt_ids
1084
- negative_prompt_embeds = self.text_encoder(
1085
- uncond_input, params=params["text_encoder"]
1086
- )[0]
1087
  context = jnp.concatenate([negative_prompt_embeds, prompt_embeds])
1088
  image = jnp.concatenate([image] * 2)
1089
  seed_t2vz, prng_seed = jax.random.split(prng_seed)
1090
- # get the latent following text to video zero
1091
- latents = self.text_to_video_zero(
1092
- params,
1093
- seed_t2vz,
1094
- text_embeddings=context,
1095
- video_length=video_length,
1096
- height=height,
1097
- width=width,
1098
- num_inference_steps=num_inference_steps,
1099
- guidance_scale=guidance_scale,
1100
- controlnet_image=image,
1101
- xT=xT,
1102
- smooth_bg_strength=smooth_bg_strength,
1103
- t0=t0,
1104
- t1=t1,
1105
- motion_field_strength_x=motion_field_strength_x,
1106
- motion_field_strength_y=motion_field_strength_y,
1107
- controlnet_conditioning_scale=controlnet_conditioning_scale,
1108
- )
1109
  # scale and decode the image latents with vae
1110
  latents = 1 / self.vae.config.scaling_factor * latents
1111
  latents = rearrange(latents, "b c f h w -> (b f) c h w")
1112
- video = self.vae.apply(
1113
- {"params": params["vae"]}, latents, method=self.vae.decode
1114
- ).sample
1115
  video = (video / 2 + 0.5).clip(0, 1).transpose(0, 2, 3, 1)
1116
  return video
1117
-
1118
  @replace_example_docstring(EXAMPLE_DOC_STRING)
1119
  def __call__(
1120
  self,
@@ -1129,8 +774,8 @@ class FlaxTextToVideoPipeline(FlaxDiffusionPipeline):
1129
  controlnet_conditioning_scale: Union[float, jnp.array] = 1.0,
1130
  return_dict: bool = True,
1131
  jit: bool = False,
1132
- xT=None,
1133
- smooth_bg_strength: float = 0.0,
1134
  motion_field_strength_x: float = 3,
1135
  motion_field_strength_y: float = 4,
1136
  t0: int = 44,
@@ -1187,9 +832,7 @@ class FlaxTextToVideoPipeline(FlaxDiffusionPipeline):
1187
  if isinstance(controlnet_conditioning_scale, float):
1188
  # Convert to a tensor so each device gets a copy. Follow the prompt_ids for
1189
  # shape information, as they may be sharded (when `jit` is `True`), or not.
1190
- controlnet_conditioning_scale = jnp.array(
1191
- [controlnet_conditioning_scale] * prompt_ids.shape[0]
1192
- )
1193
  if len(prompt_ids.shape) > 2:
1194
  # Assume sharded
1195
  controlnet_conditioning_scale = controlnet_conditioning_scale[:, None]
@@ -1234,12 +877,8 @@ class FlaxTextToVideoPipeline(FlaxDiffusionPipeline):
1234
  safety_params = params["safety_checker"]
1235
  images_uint8_casted = (images * 255).round().astype("uint8")
1236
  num_devices, batch_size = images.shape[:2]
1237
- images_uint8_casted = np.asarray(images_uint8_casted).reshape(
1238
- num_devices * batch_size, height, width, 3
1239
- )
1240
- images_uint8_casted, has_nsfw_concept = self._run_safety_checker(
1241
- images_uint8_casted, safety_params, jit
1242
- )
1243
  images = np.asarray(images)
1244
  # block images
1245
  if any(has_nsfw_concept):
@@ -1252,9 +891,7 @@ class FlaxTextToVideoPipeline(FlaxDiffusionPipeline):
1252
  has_nsfw_concept = False
1253
  if not return_dict:
1254
  return (images, has_nsfw_concept)
1255
- return FlaxStableDiffusionPipelineOutput(
1256
- images=images, nsfw_content_detected=has_nsfw_concept
1257
- )
1258
 
1259
 
1260
  # Static argnums are pipe, num_inference_steps. A change would trigger recompilation.
@@ -1262,11 +899,11 @@ class FlaxTextToVideoPipeline(FlaxDiffusionPipeline):
1262
  @partial(
1263
  jax.pmap,
1264
  in_axes=(None, 0, 0, 0, 0, None, 0, 0, 0, 0, 0, 0, 0, 0, None, None),
1265
- static_broadcasted_argnums=(0, 5, 14, 15),
1266
  )
1267
  def _p_generate(
1268
  pipe,
1269
- prompt_ids,
1270
  image,
1271
  params,
1272
  prng_seed,
@@ -1299,20 +936,52 @@ def _p_generate(
1299
  t0,
1300
  t1,
1301
  )
1302
-
1303
-
1304
  @partial(jax.pmap, static_broadcasted_argnums=(0,))
1305
  def _p_get_has_nsfw_concepts(pipe, features, params):
1306
  return pipe._get_has_nsfw_concepts(features, params)
1307
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1308
 
1309
  def unshard(x: jnp.ndarray):
1310
  # einops.rearrange(x, 'd b ... -> (d b) ...')
1311
  num_devices, batch_size = x.shape[:2]
1312
  rest = x.shape[2:]
1313
  return x.reshape(num_devices * batch_size, *rest)
1314
-
1315
-
1316
  def preprocess(image, dtype):
1317
  image = image.convert("RGB")
1318
  w, h = image.size
@@ -1322,98 +991,61 @@ def preprocess(image, dtype):
1322
  image = image[None].transpose(0, 3, 1, 2)
1323
  return image
1324
 
1325
-
1326
- def prepare_latents(
1327
- params,
1328
- prng,
1329
- batch_size,
1330
- num_channels_latents,
1331
- height,
1332
- width,
1333
- vae_scale_factor,
1334
- latents=None,
1335
- ):
1336
- shape = (
1337
- batch_size,
1338
- num_channels_latents,
1339
- 1,
1340
- height // vae_scale_factor,
1341
- width // vae_scale_factor,
1342
- ) # b c f h w
1343
  # scale the initial noise by the standard deviation required by the scheduler
1344
  if latents is None:
1345
  latents = jax.random.normal(prng, shape)
1346
  latents = latents * params["scheduler"].init_noise_sigma
1347
  return latents
1348
 
1349
-
1350
  def coords_grid(batch, ht, wd):
1351
  coords = jnp.meshgrid(jnp.arange(ht), jnp.arange(wd), indexing="ij")
1352
  coords = jnp.stack(coords[::-1], axis=0)
1353
  return coords[None].repeat(batch, 0)
1354
 
1355
-
1356
  def adapt_pos_mirror(x, y, W, H):
1357
- # adapt the position, with mirror padding
1358
- x_w_mirror = ((x + W - 1) % (2 * (W - 1))) - W + 1
1359
- x_adapted = jnp.where(x_w_mirror > 0, x_w_mirror, -(x_w_mirror))
1360
- y_w_mirror = ((y + H - 1) % (2 * (H - 1))) - H + 1
1361
- y_adapted = jnp.where(y_w_mirror > 0, y_w_mirror, -(y_w_mirror))
1362
- return y_adapted, x_adapted
1363
-
1364
 
1365
- def safe_get_zeropad(img, x, y, W, H):
1366
- return jnp.where((x < W) & (x > 0) & (y < H) & (y > 0), img[y, x], 0.0)
1367
-
1368
-
1369
- def safe_get_mirror(img, x, y, W, H):
1370
- return img[adapt_pos_mirror(x, y, W, H)]
1371
 
 
 
1372
 
1373
  @partial(jax.vmap, in_axes=(0, 0, None))
1374
  @partial(jax.vmap, in_axes=(0, None, None))
1375
- @partial(jax.vmap, in_axes=(None, 0, None))
1376
  @partial(jax.vmap, in_axes=(None, 0, None))
1377
  def grid_sample(latents, grid, method):
1378
  # this is an alternative to torch.functional.nn.grid_sample in jax
1379
  # this implementation is following the algorithm described @ https://pytorch.org/docs/stable/generated/torch.nn.functional.grid_sample.html
1380
  # but with coordinates scaled to the size of the image
1381
  if method == "mirror":
1382
- return safe_get_mirror(
1383
- latents,
1384
- jnp.array(grid[0], dtype=jnp.int16),
1385
- jnp.array(grid[1], dtype=jnp.int16),
1386
- latents.shape[0],
1387
- latents.shape[1],
1388
- )
1389
- else: # default is zero padding
1390
- return safe_get_zeropad(
1391
- latents,
1392
- jnp.array(grid[0], dtype=jnp.int16),
1393
- jnp.array(grid[1], dtype=jnp.int16),
1394
- latents.shape[0],
1395
- latents.shape[1],
1396
- )
1397
-
1398
 
1399
  def bandw_vid(vid, threshold):
1400
- vid = jnp.max(vid, axis=1)
1401
- return jnp.where(vid > threshold, 1, 0)
1402
-
1403
 
1404
  def mean_blur(vid, k):
1405
- window = jnp.ones((vid.shape[0], k, k)) / (k * k)
1406
- convolve = jax.vmap(
1407
- lambda img, kernel: jax.scipy.signal.convolve(img, kernel, mode="same")
1408
- )
1409
- smooth_vid = convolve(vid, window)
1410
- return smooth_vid
1411
-
1412
 
1413
  def get_mask_pose(vid):
1414
- vid = bandw_vid(vid, 0.4)
1415
- l, h, w = vid.shape
1416
- vid = jax.image.resize(vid, (l, h // 8, w // 8), "nearest")
1417
- vid = bandw_vid(mean_blur(vid, 7)[:, None], threshold=0.01)
1418
- return vid / (jnp.max(vid) + 1e-4)
1419
- # return jax.image.resize(vid/(jnp.max(vid) + 1e-4), (l, h, w), "nearest")
 
11
  from PIL import Image
12
  from transformers import CLIPFeatureExtractor, CLIPTokenizer, FlaxCLIPTextModel
13
  from einops import rearrange, repeat
14
+ from diffusers.models import FlaxAutoencoderKL, FlaxControlNetModel, FlaxUNet2DConditionModel
 
 
 
 
15
  from diffusers.schedulers import (
16
  FlaxDDIMScheduler,
17
  FlaxDPMSolverMultistepScheduler,
 
21
  from diffusers.utils import PIL_INTERPOLATION, logging, replace_example_docstring
22
  from diffusers.pipelines.pipeline_flax_utils import FlaxDiffusionPipeline
23
  from diffusers.pipelines.stable_diffusion import FlaxStableDiffusionPipelineOutput
24
+ from diffusers.pipelines.stable_diffusion.safety_checker_flax import FlaxStableDiffusionSafetyChecker
 
 
 
25
  logger = logging.get_logger(__name__) # pylint: disable=invalid-name
26
  """
27
  Text2Video-Zero:
28
  - Inputs: Prompt, Pose Control via mp4/gif, First Frame (?)
29
  - JAX implementation
30
  - 3DUnet to replace 2DUnetConditional
 
31
 
32
+ """
33
 
34
  def replicate_devices(array):
35
  return jnp.expand_dims(array, 0).repeat(jax.device_count(), 0)
36
 
37
 
38
+ DEBUG = False # Set to True to use python for loop instead of jax.fori_loop for easier debugging
39
 
40
  EXAMPLE_DOC_STRING = """
41
  Examples:
 
94
  >>> output_images.save("generated_image.png")
95
  ```
96
  """
 
 
97
  class FlaxTextToVideoPipeline(FlaxDiffusionPipeline):
98
  def __init__(
99
  self,
 
104
  unet_vanilla,
105
  controlnet,
106
  scheduler: Union[
107
+ FlaxDDIMScheduler, FlaxPNDMScheduler, FlaxLMSDiscreteScheduler, FlaxDPMSolverMultistepScheduler
 
 
 
108
  ],
109
  safety_checker: FlaxStableDiffusionSafetyChecker,
110
  feature_extractor: CLIPFeatureExtractor,
 
142
  else:
143
  eps = jax.random.normal(prng, x0.shape, dtype=text_embeddings.dtype)
144
  alpha_vec = jnp.prod(params["scheduler"].common.alphas[t0:tMax])
145
+ xt = jnp.sqrt(alpha_vec) * x0 + \
146
+ jnp.sqrt(1-alpha_vec) * eps
147
  return xt
148
+
149
+ def DDIM_backward(self, params, num_inference_steps, timesteps, skip_t, t0, t1, do_classifier_free_guidance, text_embeddings, latents_local,
150
+ guidance_scale, controlnet_image=None, controlnet_conditioning_scale=None):
151
+ scheduler_state = self.scheduler.set_timesteps(params["scheduler"], num_inference_steps)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
152
  f = latents_local.shape[2]
153
  latents_local = rearrange(latents_local, "b c f h w -> (b f) c h w")
154
  latents = latents_local.copy()
155
  x_t0_1 = None
156
  x_t1_1 = None
157
+ max_timestep = len(timesteps)-1
158
  timesteps = jnp.array(timesteps)
 
159
  def while_body(args):
160
  step, latents, x_t0_1, x_t1_1, scheduler_state = args
161
  t = jnp.array(scheduler_state.timesteps, dtype=jnp.int32)[step]
162
+ latent_model_input = jnp.concatenate(
163
+ [latents] * 2) if do_classifier_free_guidance else latents
 
 
 
164
  latent_model_input = self.scheduler.scale_model_input(
165
  scheduler_state, latent_model_input, timestep=t
166
  )
167
  f = latents.shape[0]
168
+ te = jnp.stack([text_embeddings[0, :, :]]*f + [text_embeddings[-1,:,:]]*f)
 
 
169
  timestep = jnp.broadcast_to(t, latent_model_input.shape[0])
170
  if controlnet_image is not None:
171
  down_block_res_samples, mid_block_res_sample = self.controlnet.apply(
 
192
  jnp.array(latent_model_input),
193
  jnp.array(timestep, dtype=jnp.int32),
194
  encoder_hidden_states=te,
195
+ ).sample
196
  # perform guidance
197
  if do_classifier_free_guidance:
198
  noise_pred_uncond, noise_pred_text = jnp.split(noise_pred, 2, axis=0)
199
+ noise_pred = noise_pred_uncond + guidance_scale * \
200
+ (noise_pred_text - noise_pred_uncond)
 
201
  # compute the previous noisy sample x_t -> x_t-1
202
+ latents, scheduler_state = self.scheduler.step(scheduler_state, noise_pred, t, latents).to_tuple()
203
+ x_t0_1 = jax.lax.select((step < max_timestep-1) & (timesteps[step+1] == t0), latents, x_t0_1)
204
+ x_t1_1 = jax.lax.select((step < max_timestep-1) & (timesteps[step+1] == t1), latents, x_t1_1)
 
 
 
 
 
 
205
  return (step + 1, latents, x_t0_1, x_t1_1, scheduler_state)
206
+
207
  latents_shape = latents.shape
208
  x_t0_1, x_t1_1 = jnp.zeros(latents_shape), jnp.zeros(latents_shape)
209
 
210
  def cond_fun(arg):
211
  step, latents, x_t0_1, x_t1_1, scheduler_state = arg
212
  return (step < skip_t) & (step < num_inference_steps)
213
+
214
  if DEBUG:
215
  step = 0
216
  while cond_fun((step, latents, x_t0_1, x_t1_1)):
217
+ step, latents, x_t0_1, x_t1_1, scheduler_state = while_body((step, latents, x_t0_1, x_t1_1, scheduler_state))
 
 
218
  step = step + 1
219
  else:
220
+ _, latents, x_t0_1, x_t1_1, scheduler_state = jax.lax.while_loop(cond_fun, while_body, (0, latents, x_t0_1, x_t1_1, scheduler_state))
 
 
221
  latents = rearrange(latents, "(b f) c h w -> b c f h w", f=f)
222
  res = {"x0": latents.copy()}
223
  if x_t0_1 is not None:
 
227
  x_t1_1 = rearrange(x_t1_1, "(b f) c h w -> b c f h w", f=f)
228
  res["x_t1_1"] = x_t1_1.copy()
229
  return res
230
+
231
  def warp_latents_independently(self, latents, reference_flow):
232
  _, _, H, W = reference_flow.shape
233
  b, _, f, h, w = latents.shape
 
238
  coords_t0 = coords_t0.at[:, 1].set(coords_t0[:, 1] * h / H)
239
  f, c, _, _ = coords_t0.shape
240
  coords_t0 = jax.image.resize(coords_t0, (f, c, h, w), "linear")
241
+ coords_t0 = rearrange(coords_t0, 'f c h w -> f h w c')
242
+ latents_0 = rearrange(latents[0], 'c f h w -> f c h w')
243
  warped = grid_sample(latents_0, coords_t0, "mirror")
244
+ warped = rearrange(warped, '(b f) c h w -> b c f h w', f=f)
245
  return warped
246
 
247
  def warp_vid_independently(self, vid, reference_flow):
 
253
  coords_t0 = coords_t0.at[:, 1].set(coords_t0[:, 1] * h / H)
254
  f, c, _, _ = coords_t0.shape
255
  coords_t0 = jax.image.resize(coords_t0, (f, c, h, w), "linear")
256
+ coords_t0 = rearrange(coords_t0, 'f c h w -> f h w c')
257
  # latents_0 = rearrange(vid, 'c f h w -> f c h w')
258
  warped = grid_sample(vid, coords_t0, "zeropad")
259
  # warped = rearrange(warped, 'f c h w -> b c f h w', f=f)
260
  return warped
261
+
262
+ def create_motion_field(self, motion_field_strength_x, motion_field_strength_y, frame_ids, video_length, latents):
263
+ reference_flow = jnp.zeros(
264
+ (video_length-1, 2, 512, 512), dtype=latents.dtype)
 
 
 
 
 
 
265
  for fr_idx, frame_id in enumerate(frame_ids):
266
+ reference_flow = reference_flow.at[fr_idx, 0, :,
267
+ :].set(motion_field_strength_x*(frame_id))
268
+ reference_flow = reference_flow.at[fr_idx, 1, :,
269
+ :].set(motion_field_strength_y*(frame_id))
 
 
270
  return reference_flow
271
+
272
+ def create_motion_field_and_warp_latents(self, motion_field_strength_x, motion_field_strength_y, frame_ids, video_length, latents):
273
+ motion_field = self.create_motion_field(motion_field_strength_x=motion_field_strength_x,
274
+ motion_field_strength_y=motion_field_strength_y, latents=latents, video_length=video_length, frame_ids=frame_ids)
 
 
 
 
 
 
 
 
 
 
 
 
275
  for idx, latent in enumerate(latents):
276
+ latents = latents.at[idx].set(self.warp_latents_independently(
277
+ latent[None], motion_field)[0])
 
278
  return motion_field, latents
279
 
280
+ def text_to_video_zero(self, params,
281
+ prng,
282
+ text_embeddings,
283
+ video_length: Optional[int],
284
+ do_classifier_free_guidance = True,
285
+ height: Optional[int] = None,
286
+ width: Optional[int] = None,
287
+ num_inference_steps: int = 50,
288
+ guidance_scale: float = 7.5,
289
+ num_videos_per_prompt: Optional[int] = 1,
290
+ xT = None,
291
+ smooth_bg_strength: float=0.,
292
+ motion_field_strength_x: float = 12,
293
+ motion_field_strength_y: float = 12,
294
+ t0: int = 44,
295
+ t1: int = 47,
296
+ controlnet_image=None,
297
+ controlnet_conditioning_scale=0,
298
+ ):
 
 
299
  frame_ids = list(range(video_length))
300
  # Prepare timesteps
301
+ params["scheduler"] = self.scheduler.set_timesteps(params["scheduler"], num_inference_steps)
 
 
302
  timesteps = params["scheduler"].timesteps
303
  # Prepare latent variables
304
  num_channels_latents = self.unet.in_channels
305
  batch_size = 1
306
+ xT = prepare_latents(params, prng, batch_size * num_videos_per_prompt, num_channels_latents, height, width, self.vae_scale_factor, xT)
 
 
 
 
 
 
 
 
 
307
 
308
+ timesteps_ddpm = [981, 961, 941, 921, 901, 881, 861, 841, 821, 801, 781, 761, 741, 721,
309
+ 701, 681, 661, 641, 621, 601, 581, 561, 541, 521, 501, 481, 461, 441,
310
+ 421, 401, 381, 361, 341, 321, 301, 281, 261, 241, 221, 201, 181, 161,
311
+ 141, 121, 101, 81, 61, 41, 21, 1]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
312
  timesteps_ddpm.reverse()
313
  t0 = timesteps_ddpm[t0]
314
  t1 = timesteps_ddpm[t1]
315
  x_t1_1 = None
316
 
317
  # Denoising loop
318
+ shape = (batch_size, num_channels_latents, 1, height //
319
+ self.vae.scaling_factor, width // self.vae.scaling_factor)
 
 
 
 
 
320
 
321
  # perform ∆t backward steps by stable diffusion
322
+ ddim_res = self.DDIM_backward(params, num_inference_steps=num_inference_steps, timesteps=timesteps, skip_t=1000, t0=t0, t1=t1, do_classifier_free_guidance=do_classifier_free_guidance,
323
+ text_embeddings=text_embeddings, latents_local=xT, guidance_scale=guidance_scale,
324
+ controlnet_image=jnp.stack([controlnet_image[0]] * 2), controlnet_conditioning_scale=controlnet_conditioning_scale)
 
 
 
 
 
 
 
 
 
 
 
325
  x0 = ddim_res["x0"]
326
 
327
  # apply warping functions
 
329
  x_t0_1 = ddim_res["x_t0_1"]
330
  if "x_t1_1" in ddim_res:
331
  x_t1_1 = ddim_res["x_t1_1"]
332
+ x_t0_k = x_t0_1[:, :, :1, :, :].repeat(video_length-1, 2)
333
  reference_flow, x_t0_k = self.create_motion_field_and_warp_latents(
334
+ motion_field_strength_x=motion_field_strength_x, motion_field_strength_y=motion_field_strength_y, latents=x_t0_k, video_length=video_length, frame_ids=frame_ids[1:])
 
 
 
 
 
335
  # assuming t0=t1=1000, if t0 = 1000
336
 
337
  # DDPM forward for more motion freedom
338
+ ddpm_fwd = partial(self.DDPM_forward, params=params, prng=prng, x0=x_t0_k, t0=t0,
339
+ tMax=t1, shape=shape, text_embeddings=text_embeddings)
340
+ x_t1_k = jax.lax.cond(t1 > t0,
341
+ ddpm_fwd,
342
+ lambda:x_t0_k
 
 
 
 
343
  )
 
344
  x_t1 = jnp.concatenate([x_t1_1, x_t1_k], axis=2)
345
 
346
  # backward stepts by stable diffusion
347
 
348
+ #warp the controlnet image following the same flow defined for latent
349
  controlnet_video = controlnet_image[:video_length]
350
+ controlnet_video = controlnet_video.at[1:].set(self.warp_vid_independently(controlnet_video[1:], reference_flow))
351
+ controlnet_image = jnp.concatenate([controlnet_video]*2)
 
 
352
  smooth_bg = True
353
 
354
  if smooth_bg:
355
+ #latent shape: "b c f h w"
356
+ M_FG = repeat(get_mask_pose(controlnet_video), "f h w -> b c f h w", c=x_t1.shape[1], b=batch_size)
357
+ initial_bg = repeat(x_t1[:,:,0] * (1 - M_FG[:,:,0]), "b c h w -> b c f h w", f=video_length-1)
358
+ #warp the controlnet image following the same flow defined for latent #f c h w
359
+ initial_bg_warped = self.warp_latents_independently(initial_bg, reference_flow)
360
+ bgs = x_t1[:,:,1:] * (1 - M_FG[:,:,1:]) #initial background
361
+ initial_mask_warped = 1 - self.warp_latents_independently(repeat(M_FG[:,:,0], "b c h w -> b c f h w", f = video_length-1), reference_flow)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
362
  # initial_mask_warped = 1 - warp_vid_independently(repeat(M_FG[:,:,0], "b c h w -> (b f) c h w", f = video_length-1), reference_flow)
363
  # initial_mask_warped = rearrange(initial_mask_warped, "(b f) c h w -> b c f h w", b=batch_size)
364
+ mask = (1 - M_FG[:,:,1:]) * initial_mask_warped
365
+ x_t1 = x_t1.at[:,:,1:].set( (1 - mask) * x_t1[:,:,1:] + mask * (initial_bg_warped * smooth_bg_strength + (1 - smooth_bg_strength) * bgs))
366
+
367
+ ddim_res = self.DDIM_backward(params, num_inference_steps=num_inference_steps, timesteps=timesteps, skip_t=t1, t0=-1, t1=-1, do_classifier_free_guidance=do_classifier_free_guidance,
368
+ text_embeddings=text_embeddings, latents_local=x_t1, guidance_scale=guidance_scale,
369
+ controlnet_image=controlnet_image, controlnet_conditioning_scale=controlnet_conditioning_scale,
370
+ )
371
+
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
372
  x0 = ddim_res["x0"]
373
  del ddim_res
374
  del x_t1
 
376
  del x_t1_k
377
  return x0
378
 
379
+ def denoise_latent(self, params, num_inference_steps, timesteps, do_classifier_free_guidance, text_embeddings, latents,
380
+ guidance_scale, controlnet_image=None, controlnet_conditioning_scale=None):
381
+
382
+ scheduler_state = self.scheduler.set_timesteps(params["scheduler"], num_inference_steps)
 
 
 
 
 
 
 
 
 
 
 
383
  # f = latents_local.shape[2]
384
  # latents_local = rearrange(latents_local, "b c f h w -> (b f) c h w")
385
 
386
+ max_timestep = len(timesteps)-1
387
  timesteps = jnp.array(timesteps)
 
388
  def while_body(args):
389
  step, latents, scheduler_state = args
390
  t = jnp.array(scheduler_state.timesteps, dtype=jnp.int32)[step]
391
+ latent_model_input = jnp.concatenate(
392
+ [latents] * 2) if do_classifier_free_guidance else latents
 
 
 
393
  latent_model_input = self.scheduler.scale_model_input(
394
  scheduler_state, latent_model_input, timestep=t
395
  )
396
  f = latents.shape[0]
397
+ te = jnp.stack([text_embeddings[0, :, :]]*f + [text_embeddings[-1,:,:]]*f)
 
 
398
  timestep = jnp.broadcast_to(t, latent_model_input.shape[0])
399
  if controlnet_image is not None:
400
  down_block_res_samples, mid_block_res_sample = self.controlnet.apply(
 
421
  jnp.array(latent_model_input),
422
  jnp.array(timestep, dtype=jnp.int32),
423
  encoder_hidden_states=te,
424
+ ).sample
425
  # perform guidance
426
  if do_classifier_free_guidance:
427
  noise_pred_uncond, noise_pred_text = jnp.split(noise_pred, 2, axis=0)
428
+ noise_pred = noise_pred_uncond + guidance_scale * \
429
+ (noise_pred_text - noise_pred_uncond)
 
430
  # compute the previous noisy sample x_t -> x_t-1
431
+ latents, scheduler_state = self.scheduler.step(scheduler_state, noise_pred, t, latents).to_tuple()
 
 
432
  return (step + 1, latents, scheduler_state)
433
+
434
  def cond_fun(arg):
435
  step, latents, scheduler_state = arg
436
+ return (step < num_inference_steps)
437
+
438
  if DEBUG:
439
  step = 0
440
  while cond_fun((step, latents, scheduler_state)):
441
+ step, latents, scheduler_state = while_body((step, latents, scheduler_state))
 
 
442
  step = step + 1
443
  else:
444
+ _, latents, scheduler_state = jax.lax.while_loop(cond_fun, while_body, (0, latents, scheduler_state))
 
 
445
  # latents = rearrange(latents, "(b f) c h w -> b c f h w", f=f)
446
  return latents
447
 
448
+ def generate_starting_frames(self,
449
+ params,
450
+ prngs: list, #list of prngs for each img
451
+ prompt,
452
+ neg_prompt,
453
+ controlnet_image,
454
+ do_classifier_free_guidance = True,
455
+ num_inference_steps: int = 50,
456
+ guidance_scale: float = 7.5,
457
+ t0: int = 44,
458
+ t1: int = 47,
459
+ controlnet_conditioning_scale=1.,
460
+ ):
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
461
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
462
  height, width = controlnet_image.shape[-2:]
463
  if height % 64 != 0 or width % 64 != 0:
464
+ raise ValueError(f"`height` and `width` have to be divisible by 64 but are {height} and {width}.")
 
 
465
 
466
+ shape = (self.unet.in_channels, height //
467
+ self.vae_scale_factor, width // self.vae_scale_factor) # c h w
 
 
 
468
  # scale the initial noise by the standard deviation required by the scheduler
469
 
470
+ # print(f"Generating {len(prngs)} first frames with prompt {prompt}, for {num_inference_steps} steps. PRNG seeds are: {prngs}")
 
 
471
 
472
+ latents = jnp.stack([jax.random.normal(prng, shape) for prng in prngs]) # b c h w
 
 
473
  latents = latents * params["scheduler"].init_noise_sigma
474
 
475
  timesteps = params["scheduler"].timesteps
476
+ timesteps_ddpm = [981, 961, 941, 921, 901, 881, 861, 841, 821, 801, 781, 761, 741, 721,
477
+ 701, 681, 661, 641, 621, 601, 581, 561, 541, 521, 501, 481, 461, 441,
478
+ 421, 401, 381, 361, 341, 321, 301, 281, 261, 241, 221, 201, 181, 161,
479
+ 141, 121, 101, 81, 61, 41, 21, 1]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
480
  timesteps_ddpm.reverse()
481
  t0 = timesteps_ddpm[t0]
482
  t1 = timesteps_ddpm[t1]
483
 
484
  # get prompt text embeddings
485
+ prompt_ids = shard(self.prepare_text_inputs(prompt))
486
+
487
+ # prompt_embeds = jax.pmap( lambda prompt_ids, params: )(prompt_ids, params)
488
+
489
+ @jax.pmap
490
+ def prepare_text(params, prompt_ids, uncond_input):
491
+ prompt_embeds = self.text_encoder(prompt_ids, params=params["text_encoder"])[0]
492
+ negative_prompt_embeds = self.text_encoder(uncond_input, params=params["text_encoder"])[0]
493
+ text_embeddings = jnp.concatenate([negative_prompt_embeds, prompt_embeds])
494
+ return text_embeddings
495
 
496
  # TODO: currently it is assumed `do_classifier_free_guidance = guidance_scale > 1.0`
497
  # implement this conditional `do_classifier_free_guidance = guidance_scale > 1.0`
498
  batch_size = 1
499
  max_length = prompt_ids.shape[-1]
500
  if neg_prompt is None:
501
+ uncond_input = shard(self.tokenizer(
502
+ [""] * batch_size, padding="max_length", max_length=max_length, return_tensors="np"
503
+ ).input_ids)
 
 
 
504
  else:
505
  neg_prompt_ids = self.prepare_text_inputs(neg_prompt)
506
+ uncond_input = shard(neg_prompt_ids)
507
 
508
+ text_embeddings = prepare_text(params, prompt_ids, uncond_input)
509
+
510
+ controlnet_image = shard(jnp.stack([controlnet_image[0]] * len(prngs) * 2))
511
+
512
+ timesteps = shard(jnp.array(timesteps))
513
+ guidance_scale = shard(jnp.array(guidance_scale))
514
+ controlnet_conditioning_scale = shard(jnp.array(controlnet_conditioning_scale))
515
+
516
+ #latent is shape # b c h w
517
+ # vmap_gen_start_frame = jax.vmap(lambda latent: p_generate_starting_frames(self, num_inference_steps, params, timesteps, text_embeddings, shard(latent[None]), guidance_scale, controlnet_image, controlnet_conditioning_scale))
518
+ # decoded_latents = vmap_gen_start_frame(latents)
519
+ decoded_latents = p_generate_starting_frames(self, num_inference_steps, params, timesteps, text_embeddings, shard(latents), guidance_scale, controlnet_image, controlnet_conditioning_scale)
520
+ # print(f"shape output: {decoded_latents.shape}")
521
+ return unshard(decoded_latents)#[:, 0]
 
522
 
523
  def generate_video(
524
  self,
 
533
  controlnet_conditioning_scale: Union[float, jnp.array] = 1.0,
534
  return_dict: bool = True,
535
  jit: bool = False,
536
+ xT = None,
537
+ smooth_bg_strength: float=0.,
538
  motion_field_strength_x: float = 3,
539
  motion_field_strength_y: float = 4,
540
  t0: int = 44,
 
600
  if isinstance(controlnet_conditioning_scale, float):
601
  # Convert to a tensor so each device gets a copy. Follow the prompt_ids for
602
  # shape information, as they may be sharded (when `jit` is `True`), or not.
603
+ controlnet_conditioning_scale = jnp.array([controlnet_conditioning_scale] * prompt_ids.shape[0])
 
 
604
  if len(prompt_ids.shape) > 2:
605
  # Assume sharded
606
  controlnet_conditioning_scale = controlnet_conditioning_scale[:, None]
 
614
  num_inference_steps,
615
  replicate_devices(guidance_scale),
616
  replicate_devices(latents) if latents is not None else None,
617
+ replicate_devices(neg_prompt_ids) if neg_prompt_ids is not None else None,
 
 
618
  replicate_devices(controlnet_conditioning_scale),
619
  replicate_devices(xT) if xT is not None else None,
620
  replicate_devices(smooth_bg_strength),
 
645
  safety_params = params["safety_checker"]
646
  images_uint8_casted = (images * 255).round().astype("uint8")
647
  num_devices, batch_size = images.shape[:2]
648
+ images_uint8_casted = np.asarray(images_uint8_casted).reshape(num_devices * batch_size, height, width, 3)
649
+ images_uint8_casted, has_nsfw_concept = self._run_safety_checker(images_uint8_casted, safety_params, jit)
 
 
 
 
650
  images = np.asarray(images)
651
  # block images
652
  if any(has_nsfw_concept):
 
659
  has_nsfw_concept = False
660
  if not return_dict:
661
  return (images, has_nsfw_concept)
662
+ return FlaxStableDiffusionPipelineOutput(images=images, nsfw_content_detected=has_nsfw_concept)
 
 
663
 
664
  def prepare_text_inputs(self, prompt: Union[str, List[str]]):
665
  if not isinstance(prompt, (str, list)):
666
+ raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
 
 
667
  text_input = self.tokenizer(
668
  prompt,
669
  padding="max_length",
 
672
  return_tensors="np",
673
  )
674
  return text_input.input_ids
 
675
  def prepare_image_inputs(self, image: Union[Image.Image, List[Image.Image]]):
676
  if not isinstance(image, (Image.Image, list)):
677
+ raise ValueError(f"image has to be of type `PIL.Image.Image` or list but is {type(image)}")
 
 
678
  if isinstance(image, Image.Image):
679
  image = [image]
680
+ processed_images = jnp.concatenate([preprocess(img, jnp.float32) for img in image])
 
 
681
  return processed_images
 
682
  def _get_has_nsfw_concepts(self, features, params):
683
  has_nsfw_concepts = self.safety_checker(features, params)
684
  return has_nsfw_concepts
 
685
  def _run_safety_checker(self, images, safety_model_params, jit=False):
686
  # safety_model_params should already be replicated when jit is True
687
  pil_images = [Image.fromarray(image) for image in images]
688
  features = self.feature_extractor(pil_images, return_tensors="np").pixel_values
689
  if jit:
690
  features = shard(features)
691
+ has_nsfw_concepts = _p_get_has_nsfw_concepts(self, features, safety_model_params)
 
 
692
  has_nsfw_concepts = unshard(has_nsfw_concepts)
693
  safety_model_params = unreplicate(safety_model_params)
694
  else:
695
+ has_nsfw_concepts = self._get_has_nsfw_concepts(features, safety_model_params)
 
 
696
  images_was_copied = False
697
  for idx, has_nsfw_concept in enumerate(has_nsfw_concepts):
698
  if has_nsfw_concept:
 
706
  " instead. Try again with a different prompt and/or seed."
707
  )
708
  return images, has_nsfw_concepts
 
709
  def _generate(
710
  self,
711
  prompt_ids: jnp.array,
 
717
  latents: Optional[jnp.array] = None,
718
  neg_prompt_ids: Optional[jnp.array] = None,
719
  controlnet_conditioning_scale: float = 1.0,
720
+ xT = None,
721
+ smooth_bg_strength: float = 0.,
722
  motion_field_strength_x: float = 12,
723
  motion_field_strength_y: float = 12,
724
  t0: int = 44,
 
727
  height, width = image.shape[-2:]
728
  video_length = image.shape[0]
729
  if height % 64 != 0 or width % 64 != 0:
730
+ raise ValueError(f"`height` and `width` have to be divisible by 64 but are {height} and {width}.")
 
 
731
  # get prompt text embeddings
732
  prompt_embeds = self.text_encoder(prompt_ids, params=params["text_encoder"])[0]
733
  # TODO: currently it is assumed `do_classifier_free_guidance = guidance_scale > 1.0`
 
736
  max_length = prompt_ids.shape[-1]
737
  if neg_prompt_ids is None:
738
  uncond_input = self.tokenizer(
739
+ [""] * batch_size, padding="max_length", max_length=max_length, return_tensors="np"
 
 
 
740
  ).input_ids
741
  else:
742
  uncond_input = neg_prompt_ids
743
+ negative_prompt_embeds = self.text_encoder(uncond_input, params=params["text_encoder"])[0]
 
 
744
  context = jnp.concatenate([negative_prompt_embeds, prompt_embeds])
745
  image = jnp.concatenate([image] * 2)
746
  seed_t2vz, prng_seed = jax.random.split(prng_seed)
747
+ #get the latent following text to video zero
748
+ latents = self.text_to_video_zero(params, seed_t2vz, text_embeddings=context, video_length=video_length,
749
+ height=height, width = width, num_inference_steps=num_inference_steps,
750
+ guidance_scale=guidance_scale, controlnet_image=image,
751
+ xT=xT, smooth_bg_strength=smooth_bg_strength, t0=t0, t1=t1,
752
+ motion_field_strength_x=motion_field_strength_x,
753
+ motion_field_strength_y=motion_field_strength_y,
754
+ controlnet_conditioning_scale=controlnet_conditioning_scale
755
+ )
 
 
 
 
 
 
 
 
 
 
756
  # scale and decode the image latents with vae
757
  latents = 1 / self.vae.config.scaling_factor * latents
758
  latents = rearrange(latents, "b c f h w -> (b f) c h w")
759
+ video = self.vae.apply({"params": params["vae"]}, latents, method=self.vae.decode).sample
 
 
760
  video = (video / 2 + 0.5).clip(0, 1).transpose(0, 2, 3, 1)
761
  return video
762
+
763
  @replace_example_docstring(EXAMPLE_DOC_STRING)
764
  def __call__(
765
  self,
 
774
  controlnet_conditioning_scale: Union[float, jnp.array] = 1.0,
775
  return_dict: bool = True,
776
  jit: bool = False,
777
+ xT = None,
778
+ smooth_bg_strength: float = 0.,
779
  motion_field_strength_x: float = 3,
780
  motion_field_strength_y: float = 4,
781
  t0: int = 44,
 
832
  if isinstance(controlnet_conditioning_scale, float):
833
  # Convert to a tensor so each device gets a copy. Follow the prompt_ids for
834
  # shape information, as they may be sharded (when `jit` is `True`), or not.
835
+ controlnet_conditioning_scale = jnp.array([controlnet_conditioning_scale] * prompt_ids.shape[0])
 
 
836
  if len(prompt_ids.shape) > 2:
837
  # Assume sharded
838
  controlnet_conditioning_scale = controlnet_conditioning_scale[:, None]
 
877
  safety_params = params["safety_checker"]
878
  images_uint8_casted = (images * 255).round().astype("uint8")
879
  num_devices, batch_size = images.shape[:2]
880
+ images_uint8_casted = np.asarray(images_uint8_casted).reshape(num_devices * batch_size, height, width, 3)
881
+ images_uint8_casted, has_nsfw_concept = self._run_safety_checker(images_uint8_casted, safety_params, jit)
 
 
 
 
882
  images = np.asarray(images)
883
  # block images
884
  if any(has_nsfw_concept):
 
891
  has_nsfw_concept = False
892
  if not return_dict:
893
  return (images, has_nsfw_concept)
894
+ return FlaxStableDiffusionPipelineOutput(images=images, nsfw_content_detected=has_nsfw_concept)
 
 
895
 
896
 
897
  # Static argnums are pipe, num_inference_steps. A change would trigger recompilation.
 
899
  @partial(
900
  jax.pmap,
901
  in_axes=(None, 0, 0, 0, 0, None, 0, 0, 0, 0, 0, 0, 0, 0, None, None),
902
+ static_broadcasted_argnums=(0, 5, 14, 15)
903
  )
904
  def _p_generate(
905
  pipe,
906
+ prompt_ids,
907
  image,
908
  params,
909
  prng_seed,
 
936
  t0,
937
  t1,
938
  )
 
 
939
  @partial(jax.pmap, static_broadcasted_argnums=(0,))
940
  def _p_get_has_nsfw_concepts(pipe, features, params):
941
  return pipe._get_has_nsfw_concepts(features, params)
942
 
943
+ @partial(
944
+ jax.pmap,
945
+ in_axes=(None, None, 0, 0, 0, 0, 0, 0, 0),
946
+ static_broadcasted_argnums=(0, 1)
947
+ )
948
+ def p_generate_starting_frames(pipe, num_inference_steps, params, timesteps, text_embeddings, latents, guidance_scale, controlnet_image, controlnet_conditioning_scale):
949
+ # perform ∆t backward steps by stable diffusion
950
+ # delta_t_diffusion = jax.vmap(lambda latent : self.DDIM_backward(params, num_inference_steps=num_inference_steps, timesteps=timesteps, skip_t=1000, t0=t0, t1=t1, do_classifier_free_guidance=do_classifier_free_guidance,
951
+ # text_embeddings=text_embeddings, latents_local=latent, guidance_scale=guidance_scale,
952
+ # controlnet_image=controlnet_image, controlnet_conditioning_scale=controlnet_conditioning_scale))
953
+ # ddim_res = delta_t_diffusion(latents)
954
+ # latents = ddim_res["x0"] #output is i b c f h w
955
+
956
+ # DDPM forward for more motion freedom
957
+ # ddpm_fwd = jax.vmap(lambda prng, latent: self.DDPM_forward(params=params, prng=prng, x0=latent, t0=t0,
958
+ # tMax=t1, shape=shape, text_embeddings=text_embeddings))
959
+ # latents = ddpm_fwd(stacked_prngs, latents)
960
+ # main backward diffusion
961
+ # denoise_first_frame = lambda latent : self.DDIM_backward(params, num_inference_steps=num_inference_steps, timesteps=timesteps, skip_t=100000, t0=-1, t1=-1, do_classifier_free_guidance=do_classifier_free_guidance,
962
+ # text_embeddings=text_embeddings, latents_local=latent, guidance_scale=guidance_scale,
963
+ # controlnet_image=controlnet_image, controlnet_conditioning_scale=controlnet_conditioning_scale)
964
+ # latents = rearrange(latents, 'i b c f h w -> (i b) c f h w')
965
+ # ddim_res = denoise_first_frame(latents)
966
+ latents = pipe.denoise_latent(params, num_inference_steps=num_inference_steps, timesteps=timesteps, do_classifier_free_guidance=True,
967
+ text_embeddings=text_embeddings, latents=latents, guidance_scale=guidance_scale,
968
+ controlnet_image=controlnet_image, controlnet_conditioning_scale=controlnet_conditioning_scale)
969
+ # latents = rearrange(ddim_res["x0"], 'i b c f h w -> (i b) c f h w') #output is i b c f h w
970
+
971
+ # scale and decode the image latents with vae
972
+ latents = 1 / pipe.vae.config.scaling_factor * latents
973
+ # latents = rearrange(latents, "b c h w -> (b f) c h w")
974
+ imgs = pipe.vae.apply({"params": params["vae"]}, latents, method=pipe.vae.decode).sample
975
+ imgs = (imgs / 2 + 0.5).clip(0, 1).transpose(0, 2, 3, 1)
976
+ return imgs
977
+
978
+
979
 
980
  def unshard(x: jnp.ndarray):
981
  # einops.rearrange(x, 'd b ... -> (d b) ...')
982
  num_devices, batch_size = x.shape[:2]
983
  rest = x.shape[2:]
984
  return x.reshape(num_devices * batch_size, *rest)
 
 
985
  def preprocess(image, dtype):
986
  image = image.convert("RGB")
987
  w, h = image.size
 
991
  image = image[None].transpose(0, 3, 1, 2)
992
  return image
993
 
994
+ def prepare_latents(params, prng, batch_size, num_channels_latents, height, width, vae_scale_factor, latents=None):
995
+ shape = (batch_size, num_channels_latents, 1, height //
996
+ vae_scale_factor, width // vae_scale_factor) #b c f h w
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
997
  # scale the initial noise by the standard deviation required by the scheduler
998
  if latents is None:
999
  latents = jax.random.normal(prng, shape)
1000
  latents = latents * params["scheduler"].init_noise_sigma
1001
  return latents
1002
 
 
1003
  def coords_grid(batch, ht, wd):
1004
  coords = jnp.meshgrid(jnp.arange(ht), jnp.arange(wd), indexing="ij")
1005
  coords = jnp.stack(coords[::-1], axis=0)
1006
  return coords[None].repeat(batch, 0)
1007
 
 
1008
  def adapt_pos_mirror(x, y, W, H):
1009
+ #adapt the position, with mirror padding
1010
+ x_w_mirror = ((x + W - 1) % (2*(W - 1))) - W + 1
1011
+ x_adapted = jnp.where(x_w_mirror > 0, x_w_mirror, - (x_w_mirror))
1012
+ y_w_mirror = ((y + H - 1) % (2*(H - 1))) - H + 1
1013
+ y_adapted = jnp.where(y_w_mirror > 0, y_w_mirror, - (y_w_mirror))
1014
+ return y_adapted, x_adapted
 
1015
 
1016
+ def safe_get_zeropad(img, x,y,W,H):
1017
+ return jnp.where((x < W) & (x > 0) & (y < H) & (y > 0), img[y,x], 0.)
 
 
 
 
1018
 
1019
+ def safe_get_mirror(img, x,y,W,H):
1020
+ return img[adapt_pos_mirror(x,y,W,H)]
1021
 
1022
  @partial(jax.vmap, in_axes=(0, 0, None))
1023
  @partial(jax.vmap, in_axes=(0, None, None))
1024
+ @partial(jax.vmap, in_axes=(None,0, None))
1025
  @partial(jax.vmap, in_axes=(None, 0, None))
1026
  def grid_sample(latents, grid, method):
1027
  # this is an alternative to torch.functional.nn.grid_sample in jax
1028
  # this implementation is following the algorithm described @ https://pytorch.org/docs/stable/generated/torch.nn.functional.grid_sample.html
1029
  # but with coordinates scaled to the size of the image
1030
  if method == "mirror":
1031
+ return safe_get_mirror(latents, jnp.array(grid[0], dtype=jnp.int16), jnp.array(grid[1], dtype=jnp.int16), latents.shape[0], latents.shape[1])
1032
+ else: #default is zero padding
1033
+ return safe_get_zeropad(latents, jnp.array(grid[0], dtype=jnp.int16), jnp.array(grid[1], dtype=jnp.int16), latents.shape[0], latents.shape[1])
 
 
 
 
 
 
 
 
 
 
 
 
 
1034
 
1035
  def bandw_vid(vid, threshold):
1036
+ vid = jnp.max(vid, axis=1)
1037
+ return jnp.where(vid > threshold, 1, 0)
 
1038
 
1039
  def mean_blur(vid, k):
1040
+ window = jnp.ones((vid.shape[0], k, k))/ (k*k)
1041
+ convolve=jax.vmap(lambda img, kernel:jax.scipy.signal.convolve(img, kernel, mode='same'))
1042
+ smooth_vid = convolve(vid, window)
1043
+ return smooth_vid
 
 
 
1044
 
1045
  def get_mask_pose(vid):
1046
+ vid = bandw_vid(vid, 0.4)
1047
+ l, h, w = vid.shape
1048
+ vid = jax.image.resize(vid, (l, h//8, w//8), "nearest")
1049
+ vid=bandw_vid(mean_blur(vid, 7)[:,None], threshold=0.01)
1050
+ return vid/(jnp.max(vid) + 1e-4)
1051
+ #return jax.image.resize(vid/(jnp.max(vid) + 1e-4), (l, h, w), "nearest")
utils/gradio_utils.py CHANGED
@@ -3,11 +3,15 @@ import os
3
  # App Pose utils
4
  def motion_to_video_path(motion):
5
  videos = [
 
 
 
 
6
  "__assets__/dance1_corr.mp4",
7
  "__assets__/dance2_corr.mp4",
8
  "__assets__/dance3_corr.mp4",
9
  "__assets__/dance4_corr.mp4",
10
- "__assets__/dance5_corr.mp4"
11
  ]
12
  if len(motion.split(" ")) > 1 and motion.split(" ")[1].isnumeric():
13
  id = int(motion.split(" ")[1]) - 1
 
3
  # App Pose utils
4
  def motion_to_video_path(motion):
5
  videos = [
6
+ "__assets__/walk_01.mp4",
7
+ "__assets__/walk_02.mp4",
8
+ "__assets__/walk_03.mp4",
9
+ "__assets__/run.mp4",
10
  "__assets__/dance1_corr.mp4",
11
  "__assets__/dance2_corr.mp4",
12
  "__assets__/dance3_corr.mp4",
13
  "__assets__/dance4_corr.mp4",
14
+ "__assets__/dance5_corr.mp4",
15
  ]
16
  if len(motion.split(" ")) > 1 and motion.split(" ")[1].isnumeric():
17
  id = int(motion.split(" ")[1]) - 1
webui/app_control_animation.py CHANGED
@@ -6,23 +6,35 @@ from utils.hf_utils import get_model_list
6
  huggingspace_name = os.environ.get("SPACE_AUTHOR_NAME")
7
  on_huggingspace = huggingspace_name if huggingspace_name is not None else False
8
 
9
- examples = [
10
- ["an astronaut waving the arm on the moon"],
11
- ["a sloth surfing on a wakeboard"],
12
- ["an astronaut walking on a street"],
13
- ["a cute cat walking on grass"],
14
- ["a horse is galloping on a street"],
15
- ["an astronaut is skiing down the hill"],
16
- ["a gorilla walking alone down the street"],
17
- ["a gorilla dancing on times square"],
18
- ["A panda dancing dancing like crazy on Times Square"],
19
- ]
20
-
 
 
 
 
 
 
 
 
 
 
 
 
 
21
 
22
  def on_video_path_update(evt: gr.EventData):
23
  return f"Selection: **{evt._data}**"
24
 
25
-
26
  def pose_gallery_callback(evt: gr.SelectData):
27
  return f"Motion {evt.index+1}"
28
 
@@ -134,31 +146,37 @@ def create_demo(model: ControlAnimationModel):
134
  gallery_pose_sequence = gr.Gallery(
135
  label="Pose Sequence",
136
  value=[
137
- ("__assets__/dance1.gif", "Motion 1"),
138
- ("__assets__/dance2.gif", "Motion 2"),
139
- ("__assets__/dance3.gif", "Motion 3"),
140
- ("__assets__/dance4.gif", "Motion 4"),
141
- ("__assets__/dance5.gif", "Motion 5"),
 
 
 
 
142
  ],
143
- ).style(grid=3, columns=3, rows=1, object_fit="contain", height="auto")
144
  input_video_path = gr.Textbox(
145
  label="Pose Sequence", visible=False, value="Motion 1"
146
  )
147
  pose_sequence_selector = gr.Markdown("Pose Sequence: **Motion 1**")
148
 
149
- with gr.Column(visible=True) as frame_selection_view:
150
- initial_frames = gr.Gallery(
151
- label="Initial Frames", show_label=False
152
- ).style(grid=4, columns=4, rows=1, object_fit="contain", preview=True)
 
153
 
154
- gr.Markdown("Select an initial frame to start your animation with.")
155
- gen_animation_button = gr.Button(
156
- value="Select Initial Frame & Generate Animation",
157
- variant="secondary",
158
- )
 
159
 
160
- with gr.Column(visible=False) as animation_view:
161
- result = gr.Video(label="Generated Video")
162
 
163
  with gr.Box(visible=False):
164
  initial_frame_index = gr.Number(
@@ -191,17 +209,17 @@ def create_demo(model: ControlAnimationModel):
191
  seed,
192
  ]
193
 
194
- def submit_select(initial_frame_index: int):
195
- if initial_frame_index != -1: # More to next step
196
- return {
197
- frame_selection_view: gr.update(visible=False),
198
- animation_view: gr.update(visible=True),
199
- }
200
 
201
- return {
202
- frame_selection_view: gr.update(visible=True),
203
- animation_view: gr.update(visible=False),
204
- }
205
 
206
  gen_frames_button.click(
207
  fn=model.generate_initial_frames,
@@ -209,12 +227,18 @@ def create_demo(model: ControlAnimationModel):
209
  outputs=initial_frames,
210
  )
211
 
 
 
 
 
 
 
 
 
 
 
212
  gen_animation_button.click(
213
- fn=submit_select,
214
- inputs=initial_frame_index,
215
- outputs=[frame_selection_view, animation_view],
216
- ).then(
217
- fn=None,
218
  inputs=animation_inputs,
219
  outputs=result,
220
  )
@@ -227,4 +251,12 @@ def create_demo(model: ControlAnimationModel):
227
  # cache_examples=on_huggingspace,
228
  # )
229
 
 
 
 
 
 
 
 
 
230
  return demo
 
6
  huggingspace_name = os.environ.get("SPACE_AUTHOR_NAME")
7
  on_huggingspace = huggingspace_name if huggingspace_name is not None else False
8
 
9
+ examples = [["A surfer in miami walking by the beach",
10
+ None,
11
+ "Motion 3",
12
+ None,
13
+ 3,
14
+ 0,
15
+ None,
16
+ None,
17
+ None,
18
+ None,
19
+ None,
20
+ None,
21
+ 0],
22
+ ]
23
+ # examples = [
24
+ # ["an astronaut waving the arm on the moon"],
25
+ # ["a sloth surfing on a wakeboard"],
26
+ # ["an astronaut walking on a street"],
27
+ # ["a cute cat walking on grass"],
28
+ # ["a horse is galloping on a street"],
29
+ # ["an astronaut is skiing down the hill"],
30
+ # ["a gorilla walking alone down the street"],
31
+ # ["a gorilla dancing on times square"],
32
+ # ["A panda dancing dancing like crazy on Times Square"],
33
+ # ]
34
 
35
  def on_video_path_update(evt: gr.EventData):
36
  return f"Selection: **{evt._data}**"
37
 
 
38
  def pose_gallery_callback(evt: gr.SelectData):
39
  return f"Motion {evt.index+1}"
40
 
 
146
  gallery_pose_sequence = gr.Gallery(
147
  label="Pose Sequence",
148
  value=[
149
+ ("__assets__/walk_01.gif", "Motion 1"),
150
+ ("__assets__/walk_02.gif", "Motion 2"),
151
+ ("__assets__/walk_03.gif", "Motion 3"),
152
+ ("__assets__/run.gif", "Motion 4"),
153
+ ("__assets__/dance1.gif", "Motion 5"),
154
+ ("__assets__/dance2.gif", "Motion 6"),
155
+ ("__assets__/dance3.gif", "Motion 7"),
156
+ ("__assets__/dance4.gif", "Motion 8"),
157
+ ("__assets__/dance5.gif", "Motion 9"),
158
  ],
159
+ ).style(columns=3)
160
  input_video_path = gr.Textbox(
161
  label="Pose Sequence", visible=False, value="Motion 1"
162
  )
163
  pose_sequence_selector = gr.Markdown("Pose Sequence: **Motion 1**")
164
 
165
+ with gr.Row():
166
+ with gr.Column(visible=True) as frame_selection_view:
167
+ initial_frames = gr.Gallery(
168
+ label="Initial Frames", show_label=False
169
+ ).style(columns=4, rows=1, object_fit="contain", preview=True)
170
 
171
+ gr.Markdown("Select an initial frame to start your animation with.")
172
+
173
+ gen_animation_button = gr.Button(
174
+ value="Select Initial Frame & Generate Animation",
175
+ variant="secondary",
176
+ )
177
 
178
+ with gr.Column(visible=True) as animation_view:
179
+ result = gr.Image(label="Generated Video")
180
 
181
  with gr.Box(visible=False):
182
  initial_frame_index = gr.Number(
 
209
  seed,
210
  ]
211
 
212
+ # def submit_select(initial_frame_index: int):
213
+ # if initial_frame_index != -1: # More to next step
214
+ # return {
215
+ # frame_selection_view: gr.update(visible=False),
216
+ # animation_view: gr.update(visible=True),
217
+ # }
218
 
219
+ # return {
220
+ # frame_selection_view: gr.update(visible=True),
221
+ # animation_view: gr.update(visible=False),
222
+ # }
223
 
224
  gen_frames_button.click(
225
  fn=model.generate_initial_frames,
 
227
  outputs=initial_frames,
228
  )
229
 
230
+ # gen_animation_button.click(
231
+ # fn=submit_select,
232
+ # inputs=initial_frame_index,
233
+ # outputs=[frame_selection_view, animation_view],
234
+ # ).then(
235
+ # fn=model.generate_animation,
236
+ # inputs=animation_inputs,
237
+ # outputs=result,
238
+ # )
239
+
240
  gen_animation_button.click(
241
+ fn=model.generate_animation,
 
 
 
 
242
  inputs=animation_inputs,
243
  outputs=result,
244
  )
 
251
  # cache_examples=on_huggingspace,
252
  # )
253
 
254
+ gr.Examples(examples=examples,
255
+ inputs=animation_inputs,
256
+ outputs=result,
257
+ fn=model.generate_animation,
258
+ cache_examples=on_huggingspace,
259
+ run_on_click=True,
260
+ )
261
+
262
  return demo