File size: 4,396 Bytes
3cf6a6c
54e0381
6d4fd39
ad1af47
3cf6a6c
 
 
 
 
5769ced
 
867e44f
54e0381
 
 
3cf6a6c
54e0381
ec5816e
54e0381
 
3cf6a6c
 
54e0381
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3cf6a6c
 
 
 
 
 
 
 
 
 
6d4fd39
3cf6a6c
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
import os, sys
import torch
import argparse

import numpy as np
import torch
import matplotlib.pyplot as plt
from PIL import Image

from rome.src.utils import args as args_utils
from rome.src.utils.processing import process_black_shape, tensor2image

sys.path.append("./rome/")
sys.path.append('./DECA')

# loading models ---- create model repo
from huggingface_hub import hf_hub_download

default_modnet_path = hf_hub_download('Pie31415/rome','modnet_photographic_portrait_matting.ckpt')
default_model_path = hf_hub_download('Pie31415/rome','rome.pth')

# parser configurations
from easydict import EasyDict as edict

args = edict({
    "save_dir": ".",
    "save_render": True,
    "model_checkpoint": default_model_path,
    "modnet_path": default_modnet_path,
    "random_seed": 0,
    "debug": False,
    "verbose": False,
    "model_image_size": 256,
    "align_source": True,
    "align_target": False,
    "align_scale": 1.25,
    "use_mesh_deformations": False,
    "subdivide_mesh": False,
    "renderer_sigma": 1e-08,
    "renderer_zfar": 100.0,
    "renderer_type": "soft_mesh",
    "renderer_texture_type": "texture_uv",
    "renderer_normalized_alphas": False,
    "deca_path": "DECA",
    "rome_data_dir": "rome/data",
    "autoenc_cat_alphas": False,
    "autoenc_align_inputs": False,
    "autoenc_use_warp": False,
    "autoenc_num_channels": 64,
    "autoenc_max_channels": 512,
    "autoenc_num_groups": 4,
    "autoenc_num_bottleneck_groups": 0,
    "autoenc_num_blocks": 2,
    "autoenc_num_layers": 4,
    "autoenc_block_type": "bottleneck",
    "neural_texture_channels": 8,
    "num_harmonic_encoding_funcs": 6,
    "unet_num_channels": 64,
    "unet_max_channels": 512,
    "unet_num_groups": 4,
    "unet_num_blocks": 1,
    "unet_num_layers": 2,
    "unet_block_type": "conv",
    "unet_skip_connection_type": "cat",
    "unet_use_normals_cond": True,
    "unet_use_vertex_cond": False,
    "unet_use_uvs_cond": False,
    "unet_pred_mask": False,
    "use_separate_seg_unet": True,
    "norm_layer_type": "gn",
    "activation_type": "relu",
    "conv_layer_type": "ws_conv",
    "deform_norm_layer_type": "gn",
    "deform_activation_type": "relu",
    "deform_conv_layer_type": "ws_conv",
    "unet_seg_weight": 0.0,
    "unet_seg_type": "bce_with_logits",
    "deform_face_tightness": 0.0001,
    "use_whole_segmentation": False,
    "mask_hair_for_neck": False,
    "use_hair_from_avatar": False,
    "use_scalp_deforms": True,
    "use_neck_deforms": True,
    "use_basis_deformer": False,
    "use_unet_deformer": True,
    "pretrained_encoder_basis_path": "",
    "pretrained_vertex_basis_path": "",
    "num_basis": 50,
    "basis_init": "pca",
    "num_vertex": 5023,
    "train_basis": True,
    "path_to_deca": "DECA",
    "path_to_linear_hair_model": "data/linear_hair.pth", # N/A
    "path_to_mobile_model": "data/disp_model.pth", # N/A
    "n_scalp": 60,
    "use_distill": False,
    "use_mobile_version": False,
    "deformer_path": "data/rome.pth",
    "output_unet_deformer_feats": 32,
    "use_deca_details": False,
    "use_flametex": False,
    "upsample_type": "nearest",
    "num_frequencies": 6,
    "deform_face_scale_coef": 0.0,
    "device": "cpu"
})

# download FLAME and DECA pretrained
generic_model_path = hf_hub_download('Pie31415/rome','generic_model.pkl')
deca_model_path = hf_hub_download('Pie31415/rome','deca_model.tar')

import pickle

with open(generic_model_path, 'rb') as f:
  ss = pickle.load(f, encoding='latin1')

  with open('./DECA/data/generic_model.pkl', 'wb') as out:
    pickle.dump(ss, out)

with open(deca_model_path, "rb") as input:
  with open('./DECA/data/deca_model.tar', "wb") as out:
    for line in input:
      out.write(line)

# load ROME inference model
from rome.infer import Infer
infer = Infer(args)

def predict(source_img, driver_img):
    out = infer.evaluate(source_img, driver_img, crop_center=False)
    res = tensor2image(torch.cat([out['source_information']['data_dict']['source_img'][0].cpu(),
                              out['source_information']['data_dict']['target_img'][0].cpu(),
                        out['render_masked'].cpu(), out['pred_target_shape_img'][0].cpu()], dim=2))
    return res[..., ::-1]

import gradio as gr

gr.Interface(
    fn=predict,
    inputs=[
        gr.Image(type="pil"),
        gr.Image(type="pil")
    ],
    outputs=gr.Image(),
    examples=[]).launch()