Spaces:
Runtime error
Runtime error
sshi
commited on
Commit
•
c37ceb0
1
Parent(s):
f9692cc
Add application file
Browse files
app.py
ADDED
@@ -0,0 +1,154 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import os
|
3 |
+
import torch
|
4 |
+
import pytorch_lightning as pl
|
5 |
+
|
6 |
+
# torch.hub.download_url_to_file('http://images.cocodataset.org/val2017/000000039769.jpg', 'cats.jpg')
|
7 |
+
# torch.hub.download_url_to_file('https://huggingface.co/datasets/nielsr/textcaps-sample/resolve/main/stop_sign.png', 'stop_sign.png')
|
8 |
+
# torch.hub.download_url_to_file('https://cdn.openai.com/dall-e-2/demos/text2im/astronaut/horse/photo/0.jpg', 'astronaut.jpg')
|
9 |
+
|
10 |
+
# os.system("wget https://github.com/hustvl/YOLOP/raw/main/weights/End-to-end.pth")
|
11 |
+
|
12 |
+
from transformers import AutoFeatureExtractor, AutoModelForObjectDetection
|
13 |
+
|
14 |
+
from PIL import Image
|
15 |
+
import matplotlib.pyplot as plt
|
16 |
+
|
17 |
+
|
18 |
+
class Detr(pl.LightningModule):
|
19 |
+
|
20 |
+
def __init__(self, lr, weight_decay):
|
21 |
+
super().__init__()
|
22 |
+
# replace COCO classification head with custom head
|
23 |
+
self.model = AutoModelForObjectDetection.from_pretrained("hustvl/yolos-small",
|
24 |
+
num_labels=len(id2label),
|
25 |
+
ignore_mismatched_sizes=True)
|
26 |
+
# see https://github.com/PyTorchLightning/pytorch-lightning/pull/1896
|
27 |
+
self.lr = lr
|
28 |
+
self.weight_decay = weight_decay
|
29 |
+
|
30 |
+
def forward(self, pixel_values):
|
31 |
+
outputs = self.model(pixel_values=pixel_values)
|
32 |
+
|
33 |
+
return outputs
|
34 |
+
|
35 |
+
def common_step(self, batch, batch_idx):
|
36 |
+
pixel_values = batch["pixel_values"]
|
37 |
+
labels = [{k: v.to(self.device) for k, v in t.items()} for t in batch["labels"]]
|
38 |
+
|
39 |
+
outputs = self.model(pixel_values=pixel_values, labels=labels)
|
40 |
+
|
41 |
+
loss = outputs.loss
|
42 |
+
loss_dict = outputs.loss_dict
|
43 |
+
|
44 |
+
return loss, loss_dict
|
45 |
+
|
46 |
+
def training_step(self, batch, batch_idx):
|
47 |
+
loss, loss_dict = self.common_step(batch, batch_idx)
|
48 |
+
# logs metrics for each training_step,
|
49 |
+
# and the average across the epoch
|
50 |
+
self.log("training_loss", loss)
|
51 |
+
for k,v in loss_dict.items():
|
52 |
+
self.log("train_" + k, v.item())
|
53 |
+
|
54 |
+
return loss
|
55 |
+
|
56 |
+
def validation_step(self, batch, batch_idx):
|
57 |
+
loss, loss_dict = self.common_step(batch, batch_idx)
|
58 |
+
self.log("validation_loss", loss)
|
59 |
+
for k,v in loss_dict.items():
|
60 |
+
self.log("validation_" + k, v.item())
|
61 |
+
|
62 |
+
return loss
|
63 |
+
|
64 |
+
def configure_optimizers(self):
|
65 |
+
optimizer = torch.optim.AdamW(self.parameters(), lr=self.lr,
|
66 |
+
weight_decay=self.weight_decay)
|
67 |
+
|
68 |
+
return optimizer
|
69 |
+
|
70 |
+
|
71 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
72 |
+
|
73 |
+
feature_extractor = AutoFeatureExtractor.from_pretrained("hustvl/yolos-small", size=512, max_size=864)
|
74 |
+
|
75 |
+
# Build model and load checkpoint
|
76 |
+
checkpoint = 'fintune_traffic_object.ckpt'
|
77 |
+
model = Detr.load_from_checkpoint(checkpoint, lr=2.5e-5, weight_decay=1e-4)
|
78 |
+
|
79 |
+
model.to(device)
|
80 |
+
model.eval()
|
81 |
+
|
82 |
+
# colors for visualization
|
83 |
+
COLORS = [[0.000, 0.447, 0.741], [0.850, 0.325, 0.098], [0.929, 0.694, 0.125],
|
84 |
+
[0.756, 0.794, 0.100], [0.466, 0.674, 0.188], [0.301, 0.745, 0.933],
|
85 |
+
[0.184, 0.494, 0.741], [0.494, 0.674, 0.556], [0.494, 0.301, 0.933],
|
86 |
+
[0.000, 0.325, 0.850], [0.745, 0.301, 0.188]]
|
87 |
+
|
88 |
+
id2label = {1: 'person', 2: 'rider', 3: 'car', 4: 'bus', 5: 'truck', 6: 'bike', 7: 'motor', 8: 'traffic light', 9: 'traffic sign', 10: 'train'}
|
89 |
+
|
90 |
+
# for output bounding box post-processing
|
91 |
+
def box_cxcywh_to_xyxy(x):
|
92 |
+
x_c, y_c, w, h = x.unbind(1)
|
93 |
+
b = [(x_c - 0.5 * w), (y_c - 0.5 * h),
|
94 |
+
(x_c + 0.5 * w), (y_c + 0.5 * h)]
|
95 |
+
return torch.stack(b, dim=1)
|
96 |
+
|
97 |
+
def rescale_bboxes(out_bbox, size):
|
98 |
+
img_w, img_h = size
|
99 |
+
b = box_cxcywh_to_xyxy(out_bbox)
|
100 |
+
b = b * torch.tensor([img_w, img_h, img_w, img_h], dtype=torch.float32)
|
101 |
+
return b
|
102 |
+
|
103 |
+
def plot_results(pil_img, prob, boxes):
|
104 |
+
fig = plt.figure(figsize=(16,10))
|
105 |
+
plt.imshow(pil_img)
|
106 |
+
ax = plt.gca()
|
107 |
+
colors = COLORS * 100
|
108 |
+
for p, (xmin, ymin, xmax, ymax) in zip(prob, boxes.tolist()):
|
109 |
+
cl = p.argmax()
|
110 |
+
c = colors[cl]
|
111 |
+
ax.add_patch(plt.Rectangle((xmin, ymin), xmax - xmin, ymax - ymin,
|
112 |
+
fill=False, color=c, linewidth=2))
|
113 |
+
text = f'{id2label[cl.item()]}: {p[cl]:0.2f}'
|
114 |
+
ax.text(xmin, ymin, text, fontsize=10,
|
115 |
+
bbox=dict(facecolor=c, alpha=0.5))
|
116 |
+
plt.axis('off')
|
117 |
+
return Image.frombytes('RGB', fig.canvas.get_width_height(),fig.canvas.tostring_rgb())
|
118 |
+
|
119 |
+
|
120 |
+
def generate_preds(processor, model, image):
|
121 |
+
inputs = processor(images=image, return_tensors="pt").to(device)
|
122 |
+
pixel_values = inputs.pixel_values.unsqueeze(0)
|
123 |
+
preds = model(pixel_values=pixel_values)
|
124 |
+
return preds
|
125 |
+
|
126 |
+
|
127 |
+
def visualize_preds(image, preds, threshold=0.9):
|
128 |
+
# keep only predictions with confidence >= threshold
|
129 |
+
probas = preds.logits.softmax(-1)[0, :, :-1]
|
130 |
+
keep = probas.max(-1).values > threshold
|
131 |
+
|
132 |
+
# convert predicted boxes from [0; 1] to image scales
|
133 |
+
bboxes_scaled = rescale_bboxes(preds.pred_boxes[0, keep].cpu(), image.size)
|
134 |
+
|
135 |
+
return plot_results(image, probas[keep], bboxes_scaled)
|
136 |
+
|
137 |
+
|
138 |
+
def detect(img, model):
|
139 |
+
|
140 |
+
# Run inference
|
141 |
+
preds = generate_preds(feature_extractor, model, img)
|
142 |
+
|
143 |
+
return visualize_preds(img, preds)
|
144 |
+
|
145 |
+
|
146 |
+
interface = gr.Interface(
|
147 |
+
fn=detect,
|
148 |
+
inputs=[gr.Image(type="pil")],
|
149 |
+
outputs=gr.Image(type="pil"),
|
150 |
+
# examples=[["example1.jpeg"], ["example2.jpeg"], ["example3.jpeg"]],
|
151 |
+
title="YOLOS for traffic object detection",
|
152 |
+
description="A downstream application for <a href='https://huggingface.co/docs/transformers/model_doc/yolos' style='text-decoration: underline' target='_blank'>YOLOS</a> application on traffic object detection. ")
|
153 |
+
|
154 |
+
interface.launch()
|