import gradio as gr import os import torch import pytorch_lightning as pl # torch.hub.download_url_to_file('http://images.cocodataset.org/val2017/000000039769.jpg', 'cats.jpg') # torch.hub.download_url_to_file('https://huggingface.co/datasets/nielsr/textcaps-sample/resolve/main/stop_sign.png', 'stop_sign.png') # torch.hub.download_url_to_file('https://cdn.openai.com/dall-e-2/demos/text2im/astronaut/horse/photo/0.jpg', 'astronaut.jpg') # os.system("wget https://github.com/hustvl/YOLOP/raw/main/weights/End-to-end.pth") from transformers import AutoFeatureExtractor, AutoModelForObjectDetection from PIL import Image import matplotlib.pyplot as plt class Detr(pl.LightningModule): def __init__(self, lr, weight_decay): super().__init__() # replace COCO classification head with custom head self.model = AutoModelForObjectDetection.from_pretrained("hustvl/yolos-small", num_labels=len(id2label), ignore_mismatched_sizes=True) # see https://github.com/PyTorchLightning/pytorch-lightning/pull/1896 self.lr = lr self.weight_decay = weight_decay def forward(self, pixel_values): outputs = self.model(pixel_values=pixel_values) return outputs def common_step(self, batch, batch_idx): pixel_values = batch["pixel_values"] labels = [{k: v.to(self.device) for k, v in t.items()} for t in batch["labels"]] outputs = self.model(pixel_values=pixel_values, labels=labels) loss = outputs.loss loss_dict = outputs.loss_dict return loss, loss_dict def training_step(self, batch, batch_idx): loss, loss_dict = self.common_step(batch, batch_idx) # logs metrics for each training_step, # and the average across the epoch self.log("training_loss", loss) for k,v in loss_dict.items(): self.log("train_" + k, v.item()) return loss def validation_step(self, batch, batch_idx): loss, loss_dict = self.common_step(batch, batch_idx) self.log("validation_loss", loss) for k,v in loss_dict.items(): self.log("validation_" + k, v.item()) return loss def configure_optimizers(self): optimizer = torch.optim.AdamW(self.parameters(), lr=self.lr, weight_decay=self.weight_decay) return optimizer device = "cuda" if torch.cuda.is_available() else "cpu" feature_extractor = AutoFeatureExtractor.from_pretrained("hustvl/yolos-small", size=512, max_size=864) # Build model and load checkpoint checkpoint = 'fintune_traffic_object.ckpt' model = Detr.load_from_checkpoint(checkpoint, lr=2.5e-5, weight_decay=1e-4) model.to(device) model.eval() # colors for visualization COLORS = [[0.000, 0.447, 0.741], [0.850, 0.325, 0.098], [0.929, 0.694, 0.125], [0.756, 0.794, 0.100], [0.466, 0.674, 0.188], [0.301, 0.745, 0.933], [0.184, 0.494, 0.741], [0.494, 0.674, 0.556], [0.494, 0.301, 0.933], [0.000, 0.325, 0.850], [0.745, 0.301, 0.188]] id2label = {1: 'person', 2: 'rider', 3: 'car', 4: 'bus', 5: 'truck', 6: 'bike', 7: 'motor', 8: 'traffic light', 9: 'traffic sign', 10: 'train'} # for output bounding box post-processing def box_cxcywh_to_xyxy(x): x_c, y_c, w, h = x.unbind(1) b = [(x_c - 0.5 * w), (y_c - 0.5 * h), (x_c + 0.5 * w), (y_c + 0.5 * h)] return torch.stack(b, dim=1) def rescale_bboxes(out_bbox, size): img_w, img_h = size b = box_cxcywh_to_xyxy(out_bbox) b = b * torch.tensor([img_w, img_h, img_w, img_h], dtype=torch.float32) return b def plot_results(pil_img, prob, boxes): fig = plt.figure(figsize=(16,10)) plt.imshow(pil_img) ax = plt.gca() colors = COLORS * 100 for p, (xmin, ymin, xmax, ymax) in zip(prob, boxes.tolist()): cl = p.argmax() c = colors[cl] ax.add_patch(plt.Rectangle((xmin, ymin), xmax - xmin, ymax - ymin, fill=False, color=c, linewidth=2)) text = f'{id2label[cl.item()]}: {p[cl]:0.2f}' ax.text(xmin, ymin, text, fontsize=10, bbox=dict(facecolor=c, alpha=0.5)) plt.axis('off') return Image.frombytes('RGB', fig.canvas.get_width_height(),fig.canvas.tostring_rgb()) def generate_preds(processor, model, image): inputs = processor(images=image, return_tensors="pt").to(device) pixel_values = inputs.pixel_values.unsqueeze(0) preds = model(pixel_values=pixel_values) return preds def visualize_preds(image, preds, threshold=0.9): # keep only predictions with confidence >= threshold probas = preds.logits.softmax(-1)[0, :, :-1] keep = probas.max(-1).values > threshold # convert predicted boxes from [0; 1] to image scales bboxes_scaled = rescale_bboxes(preds.pred_boxes[0, keep].cpu(), image.size) return plot_results(image, probas[keep], bboxes_scaled) def detect(img, model): # Run inference preds = generate_preds(feature_extractor, model, img) return visualize_preds(img, preds) interface = gr.Interface( fn=detect, inputs=[gr.Image(type="pil")], outputs=gr.Image(type="pil"), # examples=[["example1.jpeg"], ["example2.jpeg"], ["example3.jpeg"]], title="YOLOS for traffic object detection", description="A downstream application for YOLOS application on traffic object detection. ") interface.launch()