import gradio as gr from huggingface_hub import InferenceClient from duckduckgo_search import DDGS import re client = InferenceClient("Pinkstack/Superthoughts-lite-v1") def format_search_results(query, results, result_type): formatted = f"{result_type} search results for '{query}':\n" for i, result in enumerate(results): title = result.get('title', 'No title') description = result.get('body', '') or result.get('snippet', '') or 'No description' url = result.get('href', '') or result.get('url', '') or 'No URL' formatted += f"{i+1}. [{title}]({url})\n{description}\n\n" return formatted def extract_key_phrases(message): words = re.split(r'[,.!?;:\s]+', message.strip()) phrases = [message] for i in range(len(words) - 1): if len(words[i]) > 3 and len(words[i+1]) > 3: phrases.append(f"{words[i]} {words[i+1]}") return phrases[:3] def respond( message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p, search_option, ): search_text = "" if search_option != "No search": with DDGS() as ddgs: if search_option == "Normal search": web_results = ddgs.text(message, max_results=3) search_text = format_search_results(message, web_results, "Web") elif search_option == "Deep research": queries = extract_key_phrases(message) search_texts = [] for query in queries: web_results = ddgs.text(query, max_results=3) news_results = ddgs.news(query, max_results=2) search_texts.append(format_search_results(query, web_results, "Web")) search_texts.append(format_search_results(query, news_results, "News")) search_text = "\n".join(search_texts) message += "\n\n**Search Results:**\n" + search_text messages = [{"role": "system", "content": system_message}] for user_msg, assistant_msg in history: if user_msg: messages.append({"role": "user", "content": user_msg}) if assistant_msg: messages.append({"role": "assistant", "content": assistant_msg}) messages.append({"role": "user", "content": message}) response = "" for msg in client.chat_completion( messages, max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p, ): token = msg.choices[0].delta.content if token: response += token # Clean response: normalize line breaks to prevent extra
tags
response = re.sub(r'\n\s*\n+', '\n', response.strip())
# Process response to convert tags to HTML divs
formatted_response = response
formatted_response = formatted_response.replace("