Spaces:
Runtime error
Runtime error
Aastha
commited on
Commit
Β·
94cd336
1
Parent(s):
4a692a0
Add application file
Browse files
app.py
ADDED
@@ -0,0 +1,105 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from efficientnet_pytorch import EfficientNet
|
3 |
+
from torchvision import transforms
|
4 |
+
from PIL import Image
|
5 |
+
import gradio as gr
|
6 |
+
from super_gradients.training import models
|
7 |
+
import cv2
|
8 |
+
import numpy as np
|
9 |
+
|
10 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
11 |
+
|
12 |
+
# Load the YOLO-NAS model
|
13 |
+
yolo_nas_l = models.get("yolo_nas_l", pretrained_weights="coco")
|
14 |
+
|
15 |
+
def bounding_boxes_overlap(box1, box2):
|
16 |
+
"""Check if two bounding boxes overlap or touch."""
|
17 |
+
x1, y1, x2, y2 = box1
|
18 |
+
x3, y3, x4, y4 = box2
|
19 |
+
return not (x3 > x2 or x4 < x1 or y3 > y2 or y4 < y1)
|
20 |
+
|
21 |
+
def merge_boxes(box1, box2):
|
22 |
+
"""Return the encompassing bounding box of two boxes."""
|
23 |
+
x1, y1, x2, y2 = box1
|
24 |
+
x3, y3, x4, y4 = box2
|
25 |
+
x = min(x1, x3)
|
26 |
+
y = min(y1, y3)
|
27 |
+
w = max(x2, x4)
|
28 |
+
h = max(y2, y4)
|
29 |
+
return (x, y, w, h)
|
30 |
+
|
31 |
+
def save_merged_boxes(predictions, image_np):
|
32 |
+
"""Save merged bounding boxes as separate images."""
|
33 |
+
processed_boxes = set()
|
34 |
+
roi = None # Initialize roi to None
|
35 |
+
|
36 |
+
for image_prediction in predictions:
|
37 |
+
bboxes = image_prediction.prediction.bboxes_xyxy
|
38 |
+
for box1 in bboxes:
|
39 |
+
for box2 in bboxes:
|
40 |
+
if np.array_equal(box1, box2):
|
41 |
+
continue
|
42 |
+
if bounding_boxes_overlap(box1, box2) and tuple(box1) not in processed_boxes and tuple(box2) not in processed_boxes:
|
43 |
+
merged_box = merge_boxes(box1, box2)
|
44 |
+
roi = image_np[int(merged_box[1]):int(merged_box[3]), int(merged_box[0]):int(merged_box[2])]
|
45 |
+
processed_boxes.add(tuple(box1))
|
46 |
+
processed_boxes.add(tuple(box2))
|
47 |
+
break # Exit the inner loop once a match is found
|
48 |
+
if roi is not None:
|
49 |
+
break # Exit the outer loop once a match is found
|
50 |
+
|
51 |
+
return roi
|
52 |
+
|
53 |
+
# Load the EfficientNet model
|
54 |
+
def load_model(model_path):
|
55 |
+
model = torch.load(model_path)
|
56 |
+
model = model.to(device)
|
57 |
+
model.eval() # Set the model to evaluation mode
|
58 |
+
return model
|
59 |
+
|
60 |
+
# Perform inference on an image
|
61 |
+
def predict_image(image, model):
|
62 |
+
# First, get the ROI using YOLO-NAS
|
63 |
+
image_np = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
|
64 |
+
predictions = yolo_nas_l.predict(image_np, iou=0.3, conf=0.35)
|
65 |
+
roi_new = save_merged_boxes(predictions, image_np)
|
66 |
+
|
67 |
+
if roi_new is None:
|
68 |
+
roi_new = image_np # Use the original image if no ROI is found
|
69 |
+
|
70 |
+
# Convert ROI back to PIL Image for EfficientNet
|
71 |
+
roi_image = Image.fromarray(cv2.cvtColor(roi_new, cv2.COLOR_BGR2RGB))
|
72 |
+
|
73 |
+
# Define the image transformations
|
74 |
+
transform = transforms.Compose([
|
75 |
+
transforms.Resize(256),
|
76 |
+
transforms.CenterCrop(224),
|
77 |
+
transforms.ToTensor(),
|
78 |
+
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
|
79 |
+
])
|
80 |
+
|
81 |
+
# Convert PIL Image to Tensor
|
82 |
+
roi_image_tensor = transform(roi_image).unsqueeze(0).to(device)
|
83 |
+
|
84 |
+
with torch.no_grad():
|
85 |
+
outputs = model(roi_image_tensor)
|
86 |
+
_, predicted = outputs.max(1)
|
87 |
+
prediction_text = 'Accident' if predicted.item() == 0 else 'No accident'
|
88 |
+
|
89 |
+
return roi_image, prediction_text # Return both the roi_image and the prediction text
|
90 |
+
|
91 |
+
# Load the EfficientNet model outside the function to avoid loading it multiple times
|
92 |
+
model_path = 'vehicle.pt'
|
93 |
+
model = load_model(model_path)
|
94 |
+
|
95 |
+
# Gradio UI
|
96 |
+
title = "Vehicle Collision Classification"
|
97 |
+
description = "Upload an image to determine if it depicts a vehicle accident. Powered by EfficientNet."
|
98 |
+
examples = [["roi_none.png"], ["test2.jpeg"]] # Replace with your example image path
|
99 |
+
|
100 |
+
gr.Interface(fn=lambda img: predict_image(img, model),
|
101 |
+
inputs=gr.inputs.Image(type="pil"),
|
102 |
+
outputs=[gr.outputs.Image(type="pil"), "text"], # Updated outputs to handle both image and text
|
103 |
+
title=title,
|
104 |
+
description=description,
|
105 |
+
examples=examples).launch()
|