Spaces:
Runtime error
Runtime error
Aastha
commited on
Commit
Β·
f1bc325
1
Parent(s):
909e5f1
Ensemble Kosmos2
Browse files
app.py
CHANGED
@@ -1,105 +1,384 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import torch
|
2 |
from efficientnet_pytorch import EfficientNet
|
3 |
from torchvision import transforms
|
4 |
from PIL import Image
|
5 |
import gradio as gr
|
6 |
from super_gradients.training import models
|
7 |
-
import cv2
|
8 |
-
import numpy as np
|
9 |
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
transforms.CenterCrop(224),
|
77 |
-
transforms.ToTensor(),
|
78 |
-
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
|
79 |
-
])
|
80 |
-
|
81 |
-
# Convert PIL Image to Tensor
|
82 |
-
roi_image_tensor = transform(roi_image).unsqueeze(0).to(device)
|
83 |
-
|
84 |
-
with torch.no_grad():
|
85 |
-
outputs = model(roi_image_tensor)
|
86 |
-
_, predicted = outputs.max(1)
|
87 |
-
prediction_text = 'Accident' if predicted.item() == 0 else 'No accident'
|
88 |
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import random
|
3 |
+
import numpy as np
|
4 |
+
import os
|
5 |
+
import requests
|
6 |
+
import torch
|
7 |
+
import torchvision.transforms as T
|
8 |
+
from PIL import Image
|
9 |
+
from transformers import AutoProcessor, AutoModelForVision2Seq
|
10 |
+
import cv2
|
11 |
+
import ast
|
12 |
import torch
|
13 |
from efficientnet_pytorch import EfficientNet
|
14 |
from torchvision import transforms
|
15 |
from PIL import Image
|
16 |
import gradio as gr
|
17 |
from super_gradients.training import models
|
|
|
|
|
18 |
|
19 |
+
|
20 |
+
class Kosmos2:
|
21 |
+
def __init__(self):
|
22 |
+
self.colors = [
|
23 |
+
(0, 255, 0),
|
24 |
+
(0, 0, 255),
|
25 |
+
(255, 255, 0),
|
26 |
+
(255, 0, 255),
|
27 |
+
(0, 255, 255),
|
28 |
+
(114, 128, 250),
|
29 |
+
(0, 165, 255),
|
30 |
+
(0, 128, 0),
|
31 |
+
(144, 238, 144),
|
32 |
+
(238, 238, 175),
|
33 |
+
(255, 191, 0),
|
34 |
+
(0, 128, 0),
|
35 |
+
(226, 43, 138),
|
36 |
+
(255, 0, 255),
|
37 |
+
(0, 215, 255),
|
38 |
+
(255, 0, 0),
|
39 |
+
]
|
40 |
+
|
41 |
+
self.color_map = {
|
42 |
+
f"{color_id}": f"#{hex(color[2])[2:].zfill(2)}{hex(color[1])[2:].zfill(2)}{hex(color[0])[2:].zfill(2)}" for color_id, color in enumerate(self.colors)
|
43 |
+
}
|
44 |
+
|
45 |
+
self.ckpt = "ydshieh/kosmos-2-patch14-224"
|
46 |
+
self.model = AutoModelForVision2Seq.from_pretrained(self.ckpt, trust_remote_code=True).to("cuda")
|
47 |
+
self.processor = AutoProcessor.from_pretrained(self.ckpt, trust_remote_code=True)
|
48 |
+
|
49 |
+
def is_overlapping(self, rect1, rect2):
|
50 |
+
x1, y1, x2, y2 = rect1
|
51 |
+
x3, y3, x4, y4 = rect2
|
52 |
+
return not (x2 < x3 or x1 > x4 or y2 < y3 or y1 > y4)
|
53 |
+
|
54 |
+
def draw_entity_boxes_on_image(self, image, entities, show=False, save_path=None, entity_index=-1):
|
55 |
+
"""_summary_
|
56 |
+
Args:
|
57 |
+
image (_type_): image or image path
|
58 |
+
collect_entity_location (_type_): _description_
|
59 |
+
"""
|
60 |
+
if isinstance(image, Image.Image):
|
61 |
+
image_h = image.height
|
62 |
+
image_w = image.width
|
63 |
+
image = np.array(image)[:, :, [2, 1, 0]]
|
64 |
+
elif isinstance(image, str):
|
65 |
+
if os.path.exists(image):
|
66 |
+
pil_img = Image.open(image).convert("RGB")
|
67 |
+
image = np.array(pil_img)[:, :, [2, 1, 0]]
|
68 |
+
image_h = pil_img.height
|
69 |
+
image_w = pil_img.width
|
70 |
+
else:
|
71 |
+
raise ValueError(f"invaild image path, {image}")
|
72 |
+
elif isinstance(image, torch.Tensor):
|
73 |
+
# pdb.set_trace()
|
74 |
+
image_tensor = image.cpu()
|
75 |
+
reverse_norm_mean = torch.tensor([0.48145466, 0.4578275, 0.40821073])[:, None, None]
|
76 |
+
reverse_norm_std = torch.tensor([0.26862954, 0.26130258, 0.27577711])[:, None, None]
|
77 |
+
image_tensor = image_tensor * reverse_norm_std + reverse_norm_mean
|
78 |
+
pil_img = T.ToPILImage()(image_tensor)
|
79 |
+
image_h = pil_img.height
|
80 |
+
image_w = pil_img.width
|
81 |
+
image = np.array(pil_img)[:, :, [2, 1, 0]]
|
82 |
+
else:
|
83 |
+
raise ValueError(f"invaild image format, {type(image)} for {image}")
|
84 |
+
|
85 |
+
if len(entities) == 0:
|
86 |
+
return image
|
87 |
+
|
88 |
+
indices = list(range(len(entities)))
|
89 |
+
if entity_index >= 0:
|
90 |
+
indices = [entity_index]
|
91 |
+
|
92 |
+
# Not to show too many bboxes
|
93 |
+
entities = entities[:len(self.color_map)]
|
94 |
+
|
95 |
+
new_image = image.copy()
|
96 |
+
previous_bboxes = []
|
97 |
+
# size of text
|
98 |
+
text_size = 1
|
99 |
+
# thickness of text
|
100 |
+
text_line = 1 # int(max(1 * min(image_h, image_w) / 512, 1))
|
101 |
+
box_line = 3
|
102 |
+
(c_width, text_height), _ = cv2.getTextSize("F", cv2.FONT_HERSHEY_COMPLEX, text_size, text_line)
|
103 |
+
base_height = int(text_height * 0.675)
|
104 |
+
text_offset_original = text_height - base_height
|
105 |
+
text_spaces = 3
|
106 |
+
|
107 |
+
# num_bboxes = sum(len(x[-1]) for x in entities)
|
108 |
+
used_colors = self.colors # random.sample(colors, k=num_bboxes)
|
109 |
+
|
110 |
+
color_id = -1
|
111 |
+
for entity_idx, (entity_name, (start, end), bboxes) in enumerate(entities):
|
112 |
+
color_id += 1
|
113 |
+
if entity_idx not in indices:
|
114 |
+
continue
|
115 |
+
for bbox_id, (x1_norm, y1_norm, x2_norm, y2_norm) in enumerate(bboxes):
|
116 |
+
# if start is None and bbox_id > 0:
|
117 |
+
# color_id += 1
|
118 |
+
orig_x1, orig_y1, orig_x2, orig_y2 = int(x1_norm * image_w), int(y1_norm * image_h), int(x2_norm * image_w), int(y2_norm * image_h)
|
119 |
+
|
120 |
+
# draw bbox
|
121 |
+
# random color
|
122 |
+
color = used_colors[color_id] # tuple(np.random.randint(0, 255, size=3).tolist())
|
123 |
+
new_image = cv2.rectangle(new_image, (orig_x1, orig_y1), (orig_x2, orig_y2), color, box_line)
|
124 |
+
|
125 |
+
l_o, r_o = box_line // 2 + box_line % 2, box_line // 2 + box_line % 2 + 1
|
126 |
+
|
127 |
+
x1 = orig_x1 - l_o
|
128 |
+
y1 = orig_y1 - l_o
|
129 |
+
|
130 |
+
if y1 < text_height + text_offset_original + 2 * text_spaces:
|
131 |
+
y1 = orig_y1 + r_o + text_height + text_offset_original + 2 * text_spaces
|
132 |
+
x1 = orig_x1 + r_o
|
133 |
+
|
134 |
+
# add text background
|
135 |
+
(text_width, text_height), _ = cv2.getTextSize(f" {entity_name}", cv2.FONT_HERSHEY_COMPLEX, text_size, text_line)
|
136 |
+
text_bg_x1, text_bg_y1, text_bg_x2, text_bg_y2 = x1, y1 - (text_height + text_offset_original + 2 * text_spaces), x1 + text_width, y1
|
137 |
+
|
138 |
+
for prev_bbox in previous_bboxes:
|
139 |
+
while self.is_overlapping((text_bg_x1, text_bg_y1, text_bg_x2, text_bg_y2), prev_bbox):
|
140 |
+
text_bg_y1 += (text_height + text_offset_original + 2 * text_spaces)
|
141 |
+
text_bg_y2 += (text_height + text_offset_original + 2 * text_spaces)
|
142 |
+
y1 += (text_height + text_offset_original + 2 * text_spaces)
|
143 |
+
|
144 |
+
if text_bg_y2 >= image_h:
|
145 |
+
text_bg_y1 = max(0, image_h - (text_height + text_offset_original + 2 * text_spaces))
|
146 |
+
text_bg_y2 = image_h
|
147 |
+
y1 = image_h
|
148 |
+
break
|
149 |
+
|
150 |
+
alpha = 0.5
|
151 |
+
for i in range(text_bg_y1, text_bg_y2):
|
152 |
+
for j in range(text_bg_x1, text_bg_x2):
|
153 |
+
if i < image_h and j < image_w:
|
154 |
+
if j < text_bg_x1 + 1.35 * c_width:
|
155 |
+
# original color
|
156 |
+
bg_color = color
|
157 |
+
else:
|
158 |
+
# white
|
159 |
+
bg_color = [255, 255, 255]
|
160 |
+
new_image[i, j] = (alpha * new_image[i, j] + (1 - alpha) * np.array(bg_color)).astype(np.uint8)
|
161 |
+
|
162 |
+
cv2.putText(
|
163 |
+
new_image, f" {entity_name}", (x1, y1 - text_offset_original - 1 * text_spaces), cv2.FONT_HERSHEY_COMPLEX, text_size, (0, 0, 0), text_line, cv2.LINE_AA
|
164 |
+
)
|
165 |
+
# previous_locations.append((x1, y1))
|
166 |
+
previous_bboxes.append((text_bg_x1, text_bg_y1, text_bg_x2, text_bg_y2))
|
167 |
+
|
168 |
+
pil_image = Image.fromarray(new_image[:, :, [2, 1, 0]])
|
169 |
+
if save_path:
|
170 |
+
pil_image.save(save_path)
|
171 |
+
if show:
|
172 |
+
pil_image.show()
|
173 |
+
|
174 |
+
return pil_image
|
175 |
+
|
176 |
+
def generate_predictions(self, image_input, text_input):
|
177 |
+
|
178 |
+
# Save the image and load it again to match the original Kosmos-2 demo.
|
179 |
+
# (https://github.com/microsoft/unilm/blob/f4695ed0244a275201fff00bee495f76670fbe70/kosmos-2/demo/gradio_app.py#L345-L346)
|
180 |
+
user_image_path = "/tmp/user_input_test_image.jpg"
|
181 |
+
image_input.save(user_image_path)
|
182 |
+
# This might give different results from the original argument `image_input`
|
183 |
+
image_input = Image.open(user_image_path)
|
184 |
+
|
185 |
+
if text_input == "Brief":
|
186 |
+
text_input = "<grounding>An image of"
|
187 |
+
elif text_input == "Detailed":
|
188 |
+
text_input = "<grounding>Describe this image in detail:"
|
189 |
+
else:
|
190 |
+
text_input = f"<grounding>{text_input}"
|
191 |
+
|
192 |
+
inputs = self.processor(text=text_input, images=image_input, return_tensors="pt")
|
193 |
+
|
194 |
+
generated_ids = self.model.generate(
|
195 |
+
pixel_values=inputs["pixel_values"].to("cuda"),
|
196 |
+
input_ids=inputs["input_ids"][:, :-1].to("cuda"),
|
197 |
+
attention_mask=inputs["attention_mask"][:, :-1].to("cuda"),
|
198 |
+
img_features=None,
|
199 |
+
img_attn_mask=inputs["img_attn_mask"][:, :-1].to("cuda"),
|
200 |
+
use_cache=True,
|
201 |
+
max_new_tokens=128,
|
202 |
+
)
|
203 |
+
generated_text = self.processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
204 |
+
|
205 |
+
# By default, the generated text is cleanup and the entities are extracted.
|
206 |
+
processed_text, entities = self.processor.post_process_generation(generated_text)
|
207 |
+
|
208 |
+
annotated_image = self.draw_entity_boxes_on_image(image_input, entities, show=False)
|
209 |
+
|
210 |
+
color_id = -1
|
211 |
+
entity_info = []
|
212 |
+
filtered_entities = []
|
213 |
+
for entity in entities:
|
214 |
+
entity_name, (start, end), bboxes = entity
|
215 |
+
if start == end:
|
216 |
+
# skip bounding bbox without a `phrase` associated
|
217 |
+
continue
|
218 |
+
color_id += 1
|
219 |
+
# for bbox_id, _ in enumerate(bboxes):
|
220 |
+
# if start is None and bbox_id > 0:
|
221 |
+
# color_id += 1
|
222 |
+
entity_info.append(((start, end), color_id))
|
223 |
+
filtered_entities.append(entity)
|
224 |
+
|
225 |
+
colored_text = []
|
226 |
+
prev_start = 0
|
227 |
+
end = 0
|
228 |
+
for idx, ((start, end), color_id) in enumerate(entity_info):
|
229 |
+
if start > prev_start:
|
230 |
+
colored_text.append((processed_text[prev_start:start], None))
|
231 |
+
colored_text.append((processed_text[start:end], f"{color_id}"))
|
232 |
+
prev_start = end
|
233 |
+
|
234 |
+
if end < len(processed_text):
|
235 |
+
colored_text.append((processed_text[end:len(processed_text)], None))
|
236 |
+
|
237 |
+
return annotated_image, colored_text, str(filtered_entities)
|
238 |
+
|
239 |
+
class VehiclePredictor:
|
240 |
+
def __init__(self, model_path):
|
241 |
+
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
242 |
+
self.yolo_nas_l = models.get("yolo_nas_l", pretrained_weights="coco")
|
243 |
+
self.classifier_model = torch.load(model_path)
|
244 |
+
self.classifier_model = self.classifier_model.to(self.device)
|
245 |
+
self.classifier_model.eval() # Set the model to evaluation mode
|
246 |
+
|
247 |
+
def bounding_boxes_overlap(self, box1, box2):
|
248 |
+
"""Check if two bounding boxes overlap or touch."""
|
249 |
+
x1, y1, x2, y2 = box1
|
250 |
+
x3, y3, x4, y4 = box2
|
251 |
+
return not (x3 > x2 or x4 < x1 or y3 > y2 or y4 < y1)
|
252 |
|
253 |
+
def merge_boxes(self, box1, box2):
|
254 |
+
"""Return the encompassing bounding box of two boxes."""
|
255 |
+
x1, y1, x2, y2 = box1
|
256 |
+
x3, y3, x4, y4 = box2
|
257 |
+
x = min(x1, x3)
|
258 |
+
y = min(y1, y3)
|
259 |
+
w = max(x2, x4)
|
260 |
+
h = max(y2, y4)
|
261 |
+
return (x, y, w, h)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
262 |
|
263 |
+
def save_merged_boxes(self, predictions, image_np):
|
264 |
+
"""Save merged bounding boxes as separate images."""
|
265 |
+
processed_boxes = set()
|
266 |
+
roi = None # Initialize roi to None
|
267 |
+
|
268 |
+
for image_prediction in predictions:
|
269 |
+
bboxes = image_prediction.prediction.bboxes_xyxy
|
270 |
+
for box1 in bboxes:
|
271 |
+
for box2 in bboxes:
|
272 |
+
if np.array_equal(box1, box2):
|
273 |
+
continue
|
274 |
+
if self.bounding_boxes_overlap(box1, box2) and tuple(box1) not in processed_boxes and tuple(box2) not in processed_boxes:
|
275 |
+
merged_box = self.merge_boxes(box1, box2)
|
276 |
+
roi = image_np[int(merged_box[1]):int(merged_box[3]), int(merged_box[0]):int(merged_box[2])]
|
277 |
+
processed_boxes.add(tuple(box1))
|
278 |
+
processed_boxes.add(tuple(box2))
|
279 |
+
break # Exit the inner loop once a match is found
|
280 |
+
if roi is not None:
|
281 |
+
break # Exit the outer loop once a match is found
|
282 |
+
|
283 |
+
return roi
|
284 |
+
|
285 |
+
# Perform inference on an image
|
286 |
+
def predict_image(self, image, model):
|
287 |
+
# First, get the ROI using YOLO-NAS
|
288 |
+
image_np = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
|
289 |
+
predictions = self.yolo_nas_l.predict(image_np, iou=0.3, conf=0.35)
|
290 |
+
roi_new = self.save_merged_boxes(predictions, image_np)
|
291 |
+
|
292 |
+
if roi_new is None:
|
293 |
+
roi_new = image_np # Use the original image if no ROI is found
|
294 |
+
|
295 |
+
# Convert ROI back to PIL Image for EfficientNet
|
296 |
+
roi_image = Image.fromarray(cv2.cvtColor(roi_new, cv2.COLOR_BGR2RGB))
|
297 |
+
|
298 |
+
# Define the image transformations
|
299 |
+
transform = transforms.Compose([
|
300 |
+
transforms.Resize(256),
|
301 |
+
transforms.CenterCrop(224),
|
302 |
+
transforms.ToTensor(),
|
303 |
+
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
|
304 |
+
])
|
305 |
+
|
306 |
+
# Convert PIL Image to Tensor
|
307 |
+
roi_image_tensor = transform(roi_image).unsqueeze(0).to(self.device)
|
308 |
+
|
309 |
+
with torch.no_grad():
|
310 |
+
outputs = self.classifier_model(roi_image_tensor)
|
311 |
+
_, predicted = outputs.max(1)
|
312 |
+
prediction_text = 'Accident' if predicted.item() == 0 else 'No accident'
|
313 |
+
|
314 |
+
return roi_image, prediction_text # Return both the roi_image and the prediction text
|
315 |
+
|
316 |
+
|
317 |
+
def main():
|
318 |
+
kosmos2 = Kosmos2()
|
319 |
+
vehicle_predictor = VehiclePredictor('vehicle.pt')
|
320 |
+
|
321 |
+
with gr.Blocks(title="Advanced Vehicle Contextualization & Collision Prediction", theme=gr.themes.Base()).queue() as demo:
|
322 |
+
gr.Markdown(("""
|
323 |
+
# Models used -
|
324 |
+
Kosmos-2: Grounding Multimodal Large Language Models to the World
|
325 |
+
[[Paper]](https://arxiv.org/abs/2306.14824) [[Code]](https://github.com/microsoft/unilm/blob/master/kosmos-2)
|
326 |
+
YOLO-NAS [[Code]](https://github.com/Deci-AI/super-gradients/blob/master/YOLONAS.md)
|
327 |
+
EfficientNet-b0
|
328 |
+
"""))
|
329 |
+
with gr.Row():
|
330 |
+
with gr.Column():
|
331 |
+
image_input = gr.Image(type="pil", label="Test Image")
|
332 |
+
text_input = gr.Radio(["Brief", "Detailed"], label="Description Type", value="Brief")
|
333 |
+
run_button = gr.Button(label="Run", visible=True)
|
334 |
+
|
335 |
+
with gr.Column():
|
336 |
+
image_output_kosmos = gr.Image(type="pil", label="Kosmos-2 Output Image")
|
337 |
+
text_output_kosmos = gr.HighlightedText(
|
338 |
+
label="Generated Description by Kosmos-2",
|
339 |
+
combine_adjacent=False,
|
340 |
+
show_legend=True,
|
341 |
+
).style(color_map=kosmos2.color_map)
|
342 |
+
|
343 |
+
image_output_vehicle = gr.Image(type="pil", label="Collision Predictor Output Image", size=(112, 112))
|
344 |
+
text_output_vehicle = gr.Textbox(label="Collision Predictor Result")
|
345 |
+
|
346 |
+
# record which text span (label) is selected
|
347 |
+
selected = gr.Number(-1, show_label=False, placeholder="Selected", visible=False)
|
348 |
+
|
349 |
+
# record the current `entities`
|
350 |
+
entity_output = gr.Textbox(visible=False)
|
351 |
+
|
352 |
+
# get the current selected span label
|
353 |
+
def get_text_span_label(evt: gr.SelectData):
|
354 |
+
if evt.value[-1] is None:
|
355 |
+
return -1
|
356 |
+
return int(evt.value[-1])
|
357 |
+
# and set this information to `selected`
|
358 |
+
text_output_kosmos.select(get_text_span_label, None, selected)
|
359 |
+
|
360 |
+
# update output image when we change the span (enity) selection
|
361 |
+
def update_output_image(img_input, image_output, entities, idx):
|
362 |
+
entities = ast.literal_eval(entities)
|
363 |
+
updated_image = kosmos2.draw_entity_boxes_on_image(img_input, entities, entity_index=idx)
|
364 |
+
return updated_image
|
365 |
+
selected.change(update_output_image, [image_input, image_output_kosmos, entity_output, selected], [image_output_kosmos])
|
366 |
+
|
367 |
+
def combined_predictions(img, description_type):
|
368 |
+
# Kosmos2 predictions
|
369 |
+
kosmos_image, kosmos_text, entities = kosmos2.generate_predictions(img, description_type)
|
370 |
+
|
371 |
+
# VehiclePredictor predictions
|
372 |
+
vehicle_image, vehicle_text = vehicle_predictor.predict_image(img, vehicle_predictor.classifier_model)
|
373 |
+
|
374 |
+
return kosmos_image, kosmos_text, entities, vehicle_image, vehicle_text
|
375 |
+
|
376 |
+
run_button.click(fn=combined_predictions,
|
377 |
+
inputs=[image_input, text_input],
|
378 |
+
outputs=[image_output_kosmos, text_output_kosmos, entity_output, image_output_vehicle, text_output_vehicle],
|
379 |
+
show_progress=True, queue=True)
|
380 |
+
|
381 |
+
demo.launch(share=True)
|
382 |
+
|
383 |
+
if __name__ == "__main__":
|
384 |
+
main()
|