import matplotlib.cm as cm import torch import gradio as gr from models.matching import Matching from models.utils import (make_matching_plot_fast, process_image) torch.set_grad_enabled(False) # Load the SuperPoint and SuperGlue models. device = 'cuda' if torch.cuda.is_available() else 'cpu' resize = [640, 640] max_keypoints = 1024 keypoint_threshold = 0.005 nms_radius = 4 sinkhorn_iterations = 20 match_threshold = 0.2 resize_float = False config_indoor = { 'superpoint': { 'nms_radius': nms_radius, 'keypoint_threshold': keypoint_threshold, 'max_keypoints': max_keypoints }, 'superglue': { 'weights': "indoor", 'sinkhorn_iterations': sinkhorn_iterations, 'match_threshold': match_threshold, } } config_outdoor = { 'superpoint': { 'nms_radius': nms_radius, 'keypoint_threshold': keypoint_threshold, 'max_keypoints': max_keypoints }, 'superglue': { 'weights': "outdoor", 'sinkhorn_iterations': sinkhorn_iterations, 'match_threshold': match_threshold, } } matching_indoor = Matching(config_indoor).eval().to(device) matching_outdoor = Matching(config_outdoor).eval().to(device) def run(input0, input1, superglue): if superglue == "indoor": matching = matching_indoor else: matching = matching_outdoor name0 = 'image1' name1 = 'image2' # If a rotation integer is provided (e.g. from EXIF data), use it: rot0, rot1 = 0, 0 # Load the image pair. image0, inp0, scales0 = process_image(input0, device, resize, rot0, resize_float) image1, inp1, scales1 = process_image(input1, device, resize, rot1, resize_float) if image0 is None or image1 is None: print('Problem reading image pair') return # Perform the matching. pred = matching({'image0': inp0, 'image1': inp1}) pred = {k: v[0].detach().numpy() for k, v in pred.items()} kpts0, kpts1 = pred['keypoints0'], pred['keypoints1'] matches, conf = pred['matches0'], pred['matching_scores0'] valid = matches > -1 mkpts0 = kpts0[valid] mkpts1 = kpts1[matches[valid]] mconf = conf[valid] # Visualize the matches. color = cm.jet(mconf) text = [ 'SuperGlue', 'Keypoints: {}:{}'.format(len(kpts0), len(kpts1)), '{}'.format(len(mkpts0)), ] if rot0 != 0 or rot1 != 0: text.append('Rotation: {}:{}'.format(rot0, rot1)) # Display extra parameter info. k_thresh = matching.superpoint.config['keypoint_threshold'] m_thresh = matching.superglue.config['match_threshold'] small_text = [ 'Keypoint Threshold: {:.4f}'.format(k_thresh), 'Match Threshold: {:.2f}'.format(m_thresh), 'Image Pair: {}:{}'.format(name0, name1), ] output = make_matching_plot_fast( image0, image1, kpts0, kpts1, mkpts0, mkpts1, color, text, show_keypoints=True, small_text=small_text) print('Source Image - {}, Destination Image - {}, {}, Match Percentage - {}'.format(name0, name1, text[2], len(mkpts0)/len(kpts0))) return output, text[2], str((len(mkpts0)/len(kpts0))*100.0) + '%' if __name__ == '__main__': glue = gr.Interface( fn=run, inputs=[ gr.Image(label='Input Image'), gr.Image(label='Match Image'), gr.Radio(choices=["indoor", "outdoor"], value="Indoor", type="value", label="SuperGlueType", interactive=True), ], outputs=[gr.Image( type="pil", label="Result"), gr.Textbox(label="Keypoints Matched"), gr.Textbox(label="Match Percentage") ] ) glue.queue() glue.launch()