Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,126 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import os
|
3 |
+
os.system('cd monotonic_align && python setup.py build_ext --inplace && cd ..')
|
4 |
+
|
5 |
+
import json
|
6 |
+
import math
|
7 |
+
import torch
|
8 |
+
from torch import nn
|
9 |
+
from torch.nn import functional as F
|
10 |
+
from torch.utils.data import DataLoader
|
11 |
+
|
12 |
+
import commons
|
13 |
+
import utils
|
14 |
+
from data_utils import TextAudioLoader, TextAudioCollate, TextAudioSpeakerLoader, TextAudioSpeakerCollate
|
15 |
+
from models import SynthesizerTrn
|
16 |
+
from text.symbols import symbols as symbols_default
|
17 |
+
|
18 |
+
from scipy.io.wavfile import write
|
19 |
+
from text import cleaners
|
20 |
+
|
21 |
+
model_configs = {
|
22 |
+
"Graphemes": {
|
23 |
+
"path": "french_model_vits/G_700000.pth",
|
24 |
+
"symbols": symbols_default
|
25 |
+
}
|
26 |
+
}
|
27 |
+
|
28 |
+
# Global variables
|
29 |
+
net_g = None
|
30 |
+
symbols = []
|
31 |
+
_symbol_to_id = {}
|
32 |
+
_id_to_symbol = {}
|
33 |
+
|
34 |
+
def text_to_sequence(text, cleaner_names):
|
35 |
+
sequence = []
|
36 |
+
clean_text = _clean_text(text, cleaner_names)
|
37 |
+
for symbol in clean_text:
|
38 |
+
symbol_id = _symbol_to_id[symbol]
|
39 |
+
sequence += [symbol_id]
|
40 |
+
return sequence
|
41 |
+
|
42 |
+
def _clean_text(text, cleaner_names):
|
43 |
+
for name in cleaner_names:
|
44 |
+
cleaner = getattr(cleaners, name)
|
45 |
+
if not cleaner:
|
46 |
+
raise Exception('Unknown cleaner: %s' % name)
|
47 |
+
text = cleaner(text)
|
48 |
+
return text
|
49 |
+
|
50 |
+
def get_text(text, hps):
|
51 |
+
text_norm = text_to_sequence(text, hps.data.text_cleaners)
|
52 |
+
if (hps.data.add_blank):
|
53 |
+
text_norm = commons.intersperse(text_norm, 0)
|
54 |
+
text_norm = torch.LongTensor(text_norm)
|
55 |
+
return text_norm
|
56 |
+
|
57 |
+
def load_model_and_symbols(tab_name):
|
58 |
+
global net_g, symbols, _symbol_to_id, _id_to_symbol
|
59 |
+
model_config = model_configs[tab_name]
|
60 |
+
symbols = model_config["symbols"]
|
61 |
+
_symbol_to_id = {s: i for i, s in enumerate(symbols)}
|
62 |
+
_id_to_symbol = {i: s for i, s in enumerate(symbols)}
|
63 |
+
|
64 |
+
net_g = SynthesizerTrn(
|
65 |
+
len(symbols),
|
66 |
+
hps.data.filter_length // 2 + 1,
|
67 |
+
hps.train.segment_size // hps.data.hop_length,
|
68 |
+
n_speakers=hps.data.n_speakers,
|
69 |
+
**hps.model)
|
70 |
+
_ = net_g.eval()
|
71 |
+
_ = utils.load_checkpoint(model_config["path"], net_g, None)
|
72 |
+
|
73 |
+
def tts(text, speaker_id, tab_name):
|
74 |
+
load_model_and_symbols(tab_name)
|
75 |
+
sid = torch.LongTensor([speaker_id]) # speaker identity
|
76 |
+
stn_tst = get_text(text, hps)
|
77 |
+
|
78 |
+
with torch.no_grad():
|
79 |
+
x_tst = stn_tst.unsqueeze(0)
|
80 |
+
x_tst_lengths = torch.LongTensor([stn_tst.size(0)])
|
81 |
+
audio = net_g.infer(x_tst, x_tst_lengths, sid=sid, noise_scale=.667, noise_scale_w=0.8, length_scale=1)[0][
|
82 |
+
0, 0].data.float().numpy()
|
83 |
+
return "Success", (hps.data.sampling_rate, audio)
|
84 |
+
|
85 |
+
def create_tab(tab_name):
|
86 |
+
with gr.TabItem(tab_name):
|
87 |
+
gr.Markdown(f"### {tab_name} TTS Model")
|
88 |
+
tts_input1 = gr.TextArea(label="Text in french", value="")
|
89 |
+
tts_input2 = gr.Dropdown(label="Speaker", choices=["Male", "Female"], type="index", value="Male")
|
90 |
+
tts_submit = gr.Button("Generate", variant="primary")
|
91 |
+
tts_output1 = gr.Textbox(label="Message")
|
92 |
+
tts_output2 = gr.Audio(label="Output")
|
93 |
+
tts_submit.click(lambda text, speaker_id: tts(text, speaker_id, tab_name), [tts_input1, tts_input2], [tts_output1, tts_output2])
|
94 |
+
|
95 |
+
hps = utils.get_hparams_from_file("configs/vctk_base.json")
|
96 |
+
|
97 |
+
app = gr.Blocks()
|
98 |
+
with app:
|
99 |
+
gr.Markdown(
|
100 |
+
"""
|
101 |
+
# VITS Implementation for French
|
102 |
+
|
103 |
+
Based on VITS (https://github.com/jaywalnut310/vits).
|
104 |
+
|
105 |
+
## How to use:
|
106 |
+
Write the text on the box below. For faster inference, it is recommended to use short sentences.
|
107 |
+
|
108 |
+
## Hint: Some sample texts are available at the bottom of the web site.
|
109 |
+
"""
|
110 |
+
)
|
111 |
+
with gr.Tabs():
|
112 |
+
create_tab("French TTS")
|
113 |
+
|
114 |
+
gr.Markdown(
|
115 |
+
"""
|
116 |
+
## Examples
|
117 |
+
| Input Text | Speaker |
|
118 |
+
|------------|---------|
|
119 |
+
| On ne voit bien qu'avec le cœur, l'essentiel est invisible pour les yeux. | Female |
|
120 |
+
| Voilà plusieurs fois, Monsieur, que je vous rencontre sur mon chemin. C’est autant de fois de trop, et j’en ai assez de perdre mon temps à déjouer les pièges que vous me tendez. | Male |
|
121 |
+
| Je pense, donc je suis. | Female |
|
122 |
+
| La vie est un sommeil, l'amour en est le rêve, et vous aurez vécu si vous avez aimé. | Male |
|
123 |
+
"""
|
124 |
+
)
|
125 |
+
|
126 |
+
app.launch()
|