Pipe1213 commited on
Commit
c3bdc3d
·
verified ·
1 Parent(s): 95f5b5e

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +95 -0
app.py ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import os
3
+ os.system('cd monotonic_align && python setup.py build_ext --inplace && cd ..')
4
+
5
+ import json
6
+ import math
7
+ import torch
8
+ from torch import nn
9
+ from torch.nn import functional as F
10
+ from torch.utils.data import DataLoader
11
+
12
+ import commons
13
+ import utils
14
+ from data_utils import TextAudioLoader, TextAudioCollate, TextAudioSpeakerLoader, TextAudioSpeakerCollate
15
+ from models import SynthesizerTrn
16
+ #from text.symbols import symbols
17
+ from wa_graphemes.symbols import symbols
18
+ from text import text_to_sequence
19
+ from scipy.io.wavfile import write
20
+
21
+ def get_text(text, hps):
22
+ text_norm = text_to_sequence(text, hps.data.text_cleaners)
23
+ if hps.data.add_blank:
24
+ text_norm = commons.intersperse(text_norm, 0)
25
+ text_norm = torch.LongTensor(text_norm)
26
+ return text_norm
27
+
28
+ def load_model(model_path, hps):
29
+ net_g = SynthesizerTrn(
30
+ len(symbols),
31
+ hps.data.filter_length // 2 + 1,
32
+ hps.train.segment_size // hps.data.hop_length,
33
+ n_speakers=hps.data.n_speakers,
34
+ **hps.model)
35
+ _ = net_g.eval()
36
+ _ = utils.load_checkpoint(model_path, net_g, None)
37
+ return net_g
38
+
39
+ #hps = utils.get_hparams_from_file("configs/vctk_base.json")
40
+ hps = utils.get_hparams_from_file("wa_graphemes/config.json")
41
+
42
+ # Define a dictionary to store the model paths for each tab
43
+ model_paths = {
44
+ "Graphemes": "wa_graphemes/G_258000.pth"
45
+ }
46
+
47
+ # Load the initial model
48
+ net_g = load_model(model_paths["Graphemes"], hps)
49
+
50
+ def tts(text, speaker_id, tab_name):
51
+ global net_g
52
+ net_g = load_model(model_paths[tab_name], hps)
53
+ sid = torch.LongTensor([speaker_id]) # speaker identity
54
+ stn_tst = get_text(text, hps)
55
+
56
+ with torch.no_grad():
57
+ x_tst = stn_tst.unsqueeze(0)
58
+ x_tst_lengths = torch.LongTensor([stn_tst.size(0)])
59
+ audio = net_g.infer(x_tst, x_tst_lengths, sid=sid, noise_scale=.667, noise_scale_w=0.8, length_scale=1)[0][
60
+ 0, 0].data.float().numpy()
61
+ return "Success", (hps.data.sampling_rate, audio)
62
+
63
+ def create_tab(tab_name):
64
+ with gr.TabItem(tab_name):
65
+ gr.Markdown(f"### {tab_name} TTS Model")
66
+ tts_input1 = gr.TextArea(label="Text in Walloon on IPA phonemes", value="")
67
+ tts_input2 = gr.Dropdown(label="Speaker", choices=["Male", "Female"], type="index", value="Male")
68
+ tts_submit = gr.Button("Generate", variant="primary")
69
+ tts_output1 = gr.Textbox(label="Message")
70
+ tts_output2 = gr.Audio(label="Output")
71
+ tts_submit.click(lambda text, speaker_id: tts(text, speaker_id, tab_name), [tts_input1, tts_input2], [tts_output1, tts_output2])
72
+
73
+ app = gr.Blocks()
74
+ with app:
75
+ gr.Markdown(
76
+ """
77
+ # First Text to Speech (TTS) for Walloon
78
+ Based on VITS (https://github.com/jaywalnut310/vits).
79
+ Write the text in graphemes. For faster inference speed it is recommended to use short sentences.
80
+ """
81
+ )
82
+ with gr.Tabs():
83
+ create_tab("Phonemes_finetuned")
84
+
85
+ gr.Markdown(
86
+ """
87
+ ### Examples
88
+ | Input Text | Speaker | Input Method |
89
+ |------------|---------|---------------|
90
+ | li biːç ɛ l sɔlja ɛstẽ ki s maʁɡajẽ pɔ sawɛ kiː ski , dɛ døː , ɛstøː l py fwaʁ . m ɛ̃ s koː la , la k i vɛjɛ õ tsminɔː k aʁivef pjim pjam , d ɛ̃ õ bja nuː tsoː paltɔ . | Female | Phonemes |
91
+ | Li bijhe et l’ solea estént ki s’ margayént po sawè kî çki, des deus, esteut l’ pus foirt. Mins ç’ côp la, la k’ i veyèt on tchminåd k' arivéve pyim piam, dins on bea noû tchôd paltot. | Male | Graphemes |
92
+ """
93
+ )
94
+
95
+ app.launch()