PirateXX commited on
Commit
c287584
·
verified ·
1 Parent(s): 4b31ec7

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +63 -0
app.py ADDED
@@ -0,0 +1,63 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+
3
+ import nltk
4
+ import random
5
+ import numpy as np
6
+ import torch
7
+ from transformers import T5ForConditionalGeneration,T5Tokenizer
8
+ summary_model = T5ForConditionalGeneration.from_pretrained('t5-base')
9
+ summary_tokenizer = T5Tokenizer.from_pretrained('t5-base')
10
+
11
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
12
+ summary_model = summary_model.to(device)
13
+
14
+
15
+ nltk.download('punkt')
16
+ nltk.download('brown')
17
+ nltk.download('wordnet')
18
+ from nltk.corpus import wordnet as wn
19
+ from nltk.tokenize import sent_tokenize
20
+
21
+ def set_seed(seed: int):
22
+ random.seed(seed)
23
+ np.random.seed(seed)
24
+ torch.manual_seed(seed)
25
+ torch.cuda.manual_seed_all(seed)
26
+
27
+ set_seed(42)
28
+
29
+ def postprocesstext (content):
30
+ final=""
31
+ for sent in sent_tokenize(content):
32
+ sent = sent.capitalize()
33
+ final = final +" "+sent
34
+ return final
35
+
36
+ def summarizer(text,model,tokenizer):
37
+ text = text.strip().replace("\n"," ")
38
+ text = "summarize: "+text
39
+ # print (text)
40
+ max_len = 512
41
+ encoding = tokenizer.encode_plus(text,max_length=max_len, pad_to_max_length=False,truncation=True, return_tensors="pt").to(device)
42
+
43
+ input_ids, attention_mask = encoding["input_ids"], encoding["attention_mask"]
44
+
45
+ outs = model.generate(input_ids=input_ids,
46
+ attention_mask=attention_mask,
47
+ early_stopping=True,
48
+ num_beams=3,
49
+ num_return_sequences=1,
50
+ no_repeat_ngram_size=2,
51
+ min_length = 75,
52
+ max_length=300)
53
+
54
+
55
+ dec = [tokenizer.decode(ids,skip_special_tokens=True) for ids in outs]
56
+ summary = dec[0]
57
+ summary = postprocesstext(summary)
58
+ summary= summary.strip()
59
+
60
+ return summary
61
+
62
+ demo = gr.Interface(fn=summarizer, inputs="text", outputs="text")
63
+ demo.launch()