Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
|
3 |
+
import nltk
|
4 |
+
import random
|
5 |
+
import numpy as np
|
6 |
+
import torch
|
7 |
+
from transformers import T5ForConditionalGeneration,T5Tokenizer
|
8 |
+
summary_model = T5ForConditionalGeneration.from_pretrained('t5-base')
|
9 |
+
summary_tokenizer = T5Tokenizer.from_pretrained('t5-base')
|
10 |
+
|
11 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
12 |
+
summary_model = summary_model.to(device)
|
13 |
+
|
14 |
+
|
15 |
+
nltk.download('punkt')
|
16 |
+
nltk.download('brown')
|
17 |
+
nltk.download('wordnet')
|
18 |
+
from nltk.corpus import wordnet as wn
|
19 |
+
from nltk.tokenize import sent_tokenize
|
20 |
+
|
21 |
+
def set_seed(seed: int):
|
22 |
+
random.seed(seed)
|
23 |
+
np.random.seed(seed)
|
24 |
+
torch.manual_seed(seed)
|
25 |
+
torch.cuda.manual_seed_all(seed)
|
26 |
+
|
27 |
+
set_seed(42)
|
28 |
+
|
29 |
+
def postprocesstext (content):
|
30 |
+
final=""
|
31 |
+
for sent in sent_tokenize(content):
|
32 |
+
sent = sent.capitalize()
|
33 |
+
final = final +" "+sent
|
34 |
+
return final
|
35 |
+
|
36 |
+
def summarizer(text,model,tokenizer):
|
37 |
+
text = text.strip().replace("\n"," ")
|
38 |
+
text = "summarize: "+text
|
39 |
+
# print (text)
|
40 |
+
max_len = 512
|
41 |
+
encoding = tokenizer.encode_plus(text,max_length=max_len, pad_to_max_length=False,truncation=True, return_tensors="pt").to(device)
|
42 |
+
|
43 |
+
input_ids, attention_mask = encoding["input_ids"], encoding["attention_mask"]
|
44 |
+
|
45 |
+
outs = model.generate(input_ids=input_ids,
|
46 |
+
attention_mask=attention_mask,
|
47 |
+
early_stopping=True,
|
48 |
+
num_beams=3,
|
49 |
+
num_return_sequences=1,
|
50 |
+
no_repeat_ngram_size=2,
|
51 |
+
min_length = 75,
|
52 |
+
max_length=300)
|
53 |
+
|
54 |
+
|
55 |
+
dec = [tokenizer.decode(ids,skip_special_tokens=True) for ids in outs]
|
56 |
+
summary = dec[0]
|
57 |
+
summary = postprocesstext(summary)
|
58 |
+
summary= summary.strip()
|
59 |
+
|
60 |
+
return summary
|
61 |
+
|
62 |
+
demo = gr.Interface(fn=summarizer, inputs="text", outputs="text")
|
63 |
+
demo.launch()
|