Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,21 +1,36 @@
|
|
1 |
import gradio as gr
|
2 |
from transformers import pipeline
|
3 |
|
4 |
-
# Load
|
5 |
classifier = pipeline("text-classification", model="Pisethan/khmer-classifier")
|
6 |
|
7 |
-
#
|
8 |
label_map = {
|
9 |
-
"LABEL_0": "
|
10 |
"LABEL_1": "grade2_lesson",
|
11 |
-
"LABEL_2": "
|
12 |
}
|
13 |
|
|
|
14 |
def predict(text):
|
15 |
output = classifier(text)[0]
|
16 |
label_id = output["label"]
|
17 |
label_name = label_map.get(label_id, label_id)
|
18 |
return f"π Label: {label_name} (Score: {output['score']:.2f})"
|
19 |
|
20 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
from transformers import pipeline
|
3 |
|
4 |
+
# Load the fine-tuned model from Hugging Face Hub
|
5 |
classifier = pipeline("text-classification", model="Pisethan/khmer-classifier")
|
6 |
|
7 |
+
# Label mapping (match this to your training label order)
|
8 |
label_map = {
|
9 |
+
"LABEL_0": "most_students",
|
10 |
"LABEL_1": "grade2_lesson",
|
11 |
+
"LABEL_2": "count_boys"
|
12 |
}
|
13 |
|
14 |
+
# Define prediction function
|
15 |
def predict(text):
|
16 |
output = classifier(text)[0]
|
17 |
label_id = output["label"]
|
18 |
label_name = label_map.get(label_id, label_id)
|
19 |
return f"π Label: {label_name} (Score: {output['score']:.2f})"
|
20 |
|
21 |
+
# Build Gradio interface
|
22 |
+
demo = gr.Interface(
|
23 |
+
fn=predict,
|
24 |
+
inputs=gr.Textbox(label="Khmer Question"),
|
25 |
+
outputs=gr.Textbox(label="Predicted Label"),
|
26 |
+
title="Khmer Prompt Classifier",
|
27 |
+
description="π§ Enter a Khmer question and get the predicted category.",
|
28 |
+
examples=[
|
29 |
+
["αα·αααααααΆααααΈα’ααααΌααααα’αααΈ?"],
|
30 |
+
["ααΎααΆααα·ααααααα»αααα»ααααΆαααΆαα?"],
|
31 |
+
["ααΆααΆααΆααΆααα·αααα
αααΎαααΆααα?"]
|
32 |
+
]
|
33 |
+
)
|
34 |
+
|
35 |
+
# Launch
|
36 |
demo.launch()
|