Update app.py
Browse files
app.py
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
import gradio as gr
|
2 |
-
from transformers import pipeline
|
3 |
import torch
|
4 |
-
import spaces # required
|
5 |
|
6 |
# Define dropdown options
|
7 |
grade_options = ["1", "2", "3", "4", "5", "6"]
|
@@ -11,10 +11,11 @@ level_options = ["Beginner", "Intermediate", "Advanced"]
|
|
11 |
@spaces.GPU
|
12 |
def generate_lesson(grade, topic, level):
|
13 |
device = 0 if torch.cuda.is_available() else -1
|
|
|
14 |
pipe = pipeline(
|
15 |
"text-generation",
|
16 |
model="Pisethan/khmer-lesson-model-v2",
|
17 |
-
tokenizer=
|
18 |
device=device
|
19 |
)
|
20 |
|
@@ -34,24 +35,25 @@ Topic: {topic}
|
|
34 |
TaRL Level: {level}
|
35 |
"""
|
36 |
|
37 |
-
|
38 |
output = pipe(
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
)
|
45 |
|
46 |
return output[0]['generated_text']
|
47 |
|
|
|
48 |
@spaces.GPU
|
49 |
def generate_all_lessons():
|
50 |
device = 0 if torch.cuda.is_available() else -1
|
|
|
51 |
pipe = pipeline(
|
52 |
"text-generation",
|
53 |
model="Pisethan/khmer-lesson-model-v2",
|
54 |
-
tokenizer=
|
55 |
device=device
|
56 |
)
|
57 |
|
@@ -59,15 +61,32 @@ def generate_all_lessons():
|
|
59 |
for grade in grade_options:
|
60 |
for topic in topic_options:
|
61 |
for level in level_options:
|
62 |
-
prompt = f"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
|
64 |
Grade: {grade}
|
65 |
Topic: {topic}
|
66 |
-
TaRL Level: {level}
|
67 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
68 |
results += f"πΉ ααααΆαα {grade} | {topic} | {level}\n{output[0]['generated_text']}\n\n{'-'*50}\n\n"
|
69 |
return results
|
70 |
|
|
|
71 |
# Gradio Interface
|
72 |
with gr.Blocks() as demo:
|
73 |
gr.Markdown("## π€ α’ααααααα½ααααααΎααααααααα·ααα·ααααΆ")
|
@@ -79,14 +98,12 @@ with gr.Blocks() as demo:
|
|
79 |
level = gr.Dropdown(choices=level_options, label="ααααα·ααα·ααα (TaRL Level)", value="Beginner")
|
80 |
|
81 |
output_box = gr.Textbox(
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
)
|
88 |
-
|
89 |
-
|
90 |
|
91 |
with gr.Row():
|
92 |
gen_btn = gr.Button("β
αααααΎαααααα")
|
@@ -97,5 +114,5 @@ with gr.Blocks() as demo:
|
|
97 |
gen_all_btn.click(fn=generate_all_lessons, outputs=output_box)
|
98 |
clear_btn.click(fn=lambda: "", outputs=output_box)
|
99 |
|
100 |
-
demo.queue() # Required for
|
101 |
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
+
from transformers import pipeline, AutoTokenizer
|
3 |
import torch
|
4 |
+
import spaces # required for ZeroGPU
|
5 |
|
6 |
# Define dropdown options
|
7 |
grade_options = ["1", "2", "3", "4", "5", "6"]
|
|
|
11 |
@spaces.GPU
|
12 |
def generate_lesson(grade, topic, level):
|
13 |
device = 0 if torch.cuda.is_available() else -1
|
14 |
+
tokenizer = AutoTokenizer.from_pretrained("Pisethan/khmer-lesson-model")
|
15 |
pipe = pipeline(
|
16 |
"text-generation",
|
17 |
model="Pisethan/khmer-lesson-model-v2",
|
18 |
+
tokenizer=tokenizer,
|
19 |
device=device
|
20 |
)
|
21 |
|
|
|
35 |
TaRL Level: {level}
|
36 |
"""
|
37 |
|
|
|
38 |
output = pipe(
|
39 |
+
prompt,
|
40 |
+
max_new_tokens=300,
|
41 |
+
temperature=0.7,
|
42 |
+
do_sample=True,
|
43 |
+
eos_token_id=tokenizer.eos_token_id
|
44 |
+
)
|
45 |
|
46 |
return output[0]['generated_text']
|
47 |
|
48 |
+
|
49 |
@spaces.GPU
|
50 |
def generate_all_lessons():
|
51 |
device = 0 if torch.cuda.is_available() else -1
|
52 |
+
tokenizer = AutoTokenizer.from_pretrained("Pisethan/khmer-lesson-model")
|
53 |
pipe = pipeline(
|
54 |
"text-generation",
|
55 |
model="Pisethan/khmer-lesson-model-v2",
|
56 |
+
tokenizer=tokenizer,
|
57 |
device=device
|
58 |
)
|
59 |
|
|
|
61 |
for grade in grade_options:
|
62 |
for topic in topic_options:
|
63 |
for level in level_options:
|
64 |
+
prompt = f"""
|
65 |
+
You are a lesson planning assistant. Return only one structured Khmer math lesson plan with these fields:
|
66 |
+
|
67 |
+
Lesson Title:
|
68 |
+
Objective:
|
69 |
+
Activity:
|
70 |
+
Instruction (Khmer):
|
71 |
+
Materials:
|
72 |
+
|
73 |
+
Please follow the structure exactly.
|
74 |
|
75 |
Grade: {grade}
|
76 |
Topic: {topic}
|
77 |
+
TaRL Level: {level}
|
78 |
+
"""
|
79 |
+
output = pipe(
|
80 |
+
prompt,
|
81 |
+
max_new_tokens=300,
|
82 |
+
temperature=0.7,
|
83 |
+
do_sample=True,
|
84 |
+
eos_token_id=tokenizer.eos_token_id
|
85 |
+
)
|
86 |
results += f"πΉ ααααΆαα {grade} | {topic} | {level}\n{output[0]['generated_text']}\n\n{'-'*50}\n\n"
|
87 |
return results
|
88 |
|
89 |
+
|
90 |
# Gradio Interface
|
91 |
with gr.Blocks() as demo:
|
92 |
gr.Markdown("## π€ α’ααααααα½ααααααΎααααααααα·ααα·ααααΆ")
|
|
|
98 |
level = gr.Dropdown(choices=level_options, label="ααααα·ααα·ααα (TaRL Level)", value="Beginner")
|
99 |
|
100 |
output_box = gr.Textbox(
|
101 |
+
label="π Khmer Lesson Plan",
|
102 |
+
lines=20,
|
103 |
+
max_lines=200,
|
104 |
+
show_copy_button=True,
|
105 |
+
autoscroll=True
|
106 |
+
)
|
|
|
|
|
107 |
|
108 |
with gr.Row():
|
109 |
gen_btn = gr.Button("β
αααααΎαααααα")
|
|
|
114 |
gen_all_btn.click(fn=generate_all_lessons, outputs=output_box)
|
115 |
clear_btn.click(fn=lambda: "", outputs=output_box)
|
116 |
|
117 |
+
demo.queue() # Required for ZeroGPU
|
118 |
demo.launch()
|