Upload 2 files
Browse files- app.py +33 -0
- requirements.txt +3 -0
app.py
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer
|
3 |
+
|
4 |
+
# Load model & tokenizer from local directory
|
5 |
+
model_path = "./khmer_lesson_model"
|
6 |
+
|
7 |
+
model = AutoModelForCausalLM.from_pretrained(model_path, local_files_only=True)
|
8 |
+
tokenizer = AutoTokenizer.from_pretrained(model_path, local_files_only=True)
|
9 |
+
|
10 |
+
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer)
|
11 |
+
|
12 |
+
def generate_lesson(grade, topic, level):
|
13 |
+
prompt = f"""Generate a Khmer math lesson plan.
|
14 |
+
|
15 |
+
Grade: {grade}
|
16 |
+
Topic: {topic}
|
17 |
+
TaRL Level: {level}"""
|
18 |
+
output = pipe(prompt, max_new_tokens=200, do_sample=True, temperature=0.7)
|
19 |
+
return output[0]["generated_text"]
|
20 |
+
|
21 |
+
iface = gr.Interface(
|
22 |
+
fn=generate_lesson,
|
23 |
+
inputs=[
|
24 |
+
gr.Dropdown(["1", "2", "3"], label="ααααΆαα (Grade)"),
|
25 |
+
gr.Dropdown(["Addition", "Subtraction", "Counting", "Number Recognition"], label="αααααΆααα (Topic)"),
|
26 |
+
gr.Dropdown(["Beginner", "Intermediate", "Advanced"], label="ααααα·α TaRL (TaRL Level)")
|
27 |
+
],
|
28 |
+
outputs="text",
|
29 |
+
title="α’ααααααα½ααααααΎααααααααα·ααα·ααααΆ (Khmer AI Math Assistant)",
|
30 |
+
description="ααααΎαααΎαααααΆαα αααααΆααα αα·αααααα·ααα·ααα αα½α
α
α»α
αααααΎααααααα"
|
31 |
+
)
|
32 |
+
|
33 |
+
iface.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
transformers>=4.31
|
2 |
+
gradio>=3.40
|
3 |
+
torch
|