Update app.py
Browse files
app.py
CHANGED
@@ -3,16 +3,36 @@ import gradio as gr
|
|
3 |
from transformers import pipeline, AutoTokenizer
|
4 |
import torch
|
5 |
import spaces
|
|
|
|
|
6 |
|
7 |
-
#
|
|
|
|
|
|
|
|
|
|
|
8 |
grade_options = ["1", "2", "3", "4", "5", "6"]
|
9 |
topic_options = ["Addition", "Subtraction", "Counting", "Number Recognition", "Multiplication", "Division"]
|
10 |
level_options = ["Beginner", "Intermediate", "Advanced"]
|
11 |
|
12 |
-
#
|
13 |
-
HF_TOKEN = os.environ.get("HF_TOKEN")
|
14 |
tokenizer = AutoTokenizer.from_pretrained("Pisethan/khmer-lesson-model", token=HF_TOKEN)
|
15 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
@spaces.GPU
|
17 |
def generate_lesson(grade, topic, level):
|
18 |
device = 0 if torch.cuda.is_available() else -1
|
@@ -41,8 +61,20 @@ TaRL Level: {level}
|
|
41 |
"""
|
42 |
|
43 |
output = pipe(prompt, max_new_tokens=300, temperature=0.7, do_sample=True, eos_token_id=tokenizer.eos_token_id)
|
44 |
-
|
45 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
@spaces.GPU
|
47 |
def generate_all_lessons():
|
48 |
device = 0 if torch.cuda.is_available() else -1
|
@@ -64,10 +96,21 @@ Grade: {grade}
|
|
64 |
Topic: {topic}
|
65 |
TaRL Level: {level}"""
|
66 |
output = pipe(prompt, max_new_tokens=200, temperature=0.7, do_sample=True)
|
67 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
68 |
return results
|
69 |
|
70 |
-
#
|
71 |
with gr.Blocks() as demo:
|
72 |
gr.Markdown("## π€ α’ααααααα½ααααααΎααααααααα·ααα·ααααΆ")
|
73 |
gr.Markdown("ααααΎαααΎαααααΆαα αααααΆααα αα·αααααα·ααα·ααα αα½α
α
α»α
αααααΎααααααα α¬α
α»α
αααΌαα»αααΆαααααααααααΆαααααααΎααααααααΆααα’ααα")
|
|
|
3 |
from transformers import pipeline, AutoTokenizer
|
4 |
import torch
|
5 |
import spaces
|
6 |
+
import json
|
7 |
+
from huggingface_hub import HfApi, upload_file
|
8 |
|
9 |
+
# --- Constants ---
|
10 |
+
HF_TOKEN = os.environ.get("HF_TOKEN")
|
11 |
+
DATASET_REPO = "Pisethan/khmer-lesson-dataset-generated"
|
12 |
+
LOCAL_JSONL = "generated_lessons.jsonl"
|
13 |
+
|
14 |
+
# --- Options ---
|
15 |
grade_options = ["1", "2", "3", "4", "5", "6"]
|
16 |
topic_options = ["Addition", "Subtraction", "Counting", "Number Recognition", "Multiplication", "Division"]
|
17 |
level_options = ["Beginner", "Intermediate", "Advanced"]
|
18 |
|
19 |
+
# --- Tokenizer (global) ---
|
|
|
20 |
tokenizer = AutoTokenizer.from_pretrained("Pisethan/khmer-lesson-model", token=HF_TOKEN)
|
21 |
|
22 |
+
# --- Helper to save and upload ---
|
23 |
+
def save_to_jsonl(record):
|
24 |
+
with open(LOCAL_JSONL, "a", encoding="utf-8") as f:
|
25 |
+
f.write(json.dumps(record, ensure_ascii=False) + "\n")
|
26 |
+
|
27 |
+
upload_file(
|
28 |
+
path_or_fileobj=LOCAL_JSONL,
|
29 |
+
path_in_repo="generated_lessons.jsonl",
|
30 |
+
repo_id=DATASET_REPO,
|
31 |
+
repo_type="dataset",
|
32 |
+
token=HF_TOKEN
|
33 |
+
)
|
34 |
+
|
35 |
+
# --- Generation for one lesson ---
|
36 |
@spaces.GPU
|
37 |
def generate_lesson(grade, topic, level):
|
38 |
device = 0 if torch.cuda.is_available() else -1
|
|
|
61 |
"""
|
62 |
|
63 |
output = pipe(prompt, max_new_tokens=300, temperature=0.7, do_sample=True, eos_token_id=tokenizer.eos_token_id)
|
64 |
+
result = output[0]['generated_text']
|
65 |
+
|
66 |
+
# Save to dataset
|
67 |
+
record = {
|
68 |
+
"grade": grade,
|
69 |
+
"topic": topic,
|
70 |
+
"level": level,
|
71 |
+
"prompt": prompt.strip(),
|
72 |
+
"completion": result.strip()
|
73 |
+
}
|
74 |
+
save_to_jsonl(record)
|
75 |
+
return result
|
76 |
+
|
77 |
+
# --- Generation for all combinations ---
|
78 |
@spaces.GPU
|
79 |
def generate_all_lessons():
|
80 |
device = 0 if torch.cuda.is_available() else -1
|
|
|
96 |
Topic: {topic}
|
97 |
TaRL Level: {level}"""
|
98 |
output = pipe(prompt, max_new_tokens=200, temperature=0.7, do_sample=True)
|
99 |
+
result = output[0]['generated_text']
|
100 |
+
|
101 |
+
record = {
|
102 |
+
"grade": grade,
|
103 |
+
"topic": topic,
|
104 |
+
"level": level,
|
105 |
+
"prompt": prompt.strip(),
|
106 |
+
"completion": result.strip()
|
107 |
+
}
|
108 |
+
save_to_jsonl(record)
|
109 |
+
|
110 |
+
results += f"πΉ ααααΆαα {grade} | {topic} | {level}\n{result}\n\n{'-'*50}\n\n"
|
111 |
return results
|
112 |
|
113 |
+
# --- UI ---
|
114 |
with gr.Blocks() as demo:
|
115 |
gr.Markdown("## π€ α’ααααααα½ααααααΎααααααααα·ααα·ααααΆ")
|
116 |
gr.Markdown("ααααΎαααΎαααααΆαα αααααΆααα αα·αααααα·ααα·ααα αα½α
α
α»α
αααααΎααααααα α¬α
α»α
αααΌαα»αααΆαααααααααααΆαααααααΎααααααααΆααα’ααα")
|