Update app.py
Browse files
app.py
CHANGED
@@ -1,22 +1,22 @@
|
|
1 |
import gradio as gr
|
2 |
-
from transformers import pipeline, AutoTokenizer
|
3 |
import torch
|
4 |
import spaces
|
5 |
import datetime
|
6 |
import json
|
7 |
import os
|
8 |
from datasets import Dataset
|
9 |
-
from huggingface_hub import
|
10 |
|
11 |
-
# β
|
12 |
-
|
13 |
|
14 |
-
#
|
15 |
grade_options = ["1", "2", "3", "4", "5", "6"]
|
16 |
topic_options = ["Addition", "Subtraction", "Counting", "Number Recognition", "Multiplication", "Division"]
|
17 |
level_options = ["Beginner", "Intermediate", "Advanced"]
|
18 |
|
19 |
-
# β
Save lesson to Hugging Face
|
20 |
def save_to_hf_dataset(prompt, output, repo_id="Pisethan/khmer-lesson-history"):
|
21 |
timestamp = datetime.datetime.now().isoformat()
|
22 |
record = {
|
@@ -25,25 +25,24 @@ def save_to_hf_dataset(prompt, output, repo_id="Pisethan/khmer-lesson-history"):
|
|
25 |
"lesson": output
|
26 |
}
|
27 |
|
28 |
-
# Save locally
|
29 |
os.makedirs("history", exist_ok=True)
|
30 |
-
|
31 |
-
with open(
|
32 |
json.dump(record, f, ensure_ascii=False, indent=2)
|
33 |
|
34 |
-
# Push to HF Dataset
|
35 |
dataset = Dataset.from_list([record])
|
36 |
-
dataset.push_to_hub(repo_id)
|
37 |
|
38 |
@spaces.GPU
|
39 |
def generate_lesson(grade, topic, level):
|
40 |
device = 0 if torch.cuda.is_available() else -1
|
41 |
-
tokenizer = AutoTokenizer.from_pretrained("Pisethan/khmer-lesson-model")
|
42 |
pipe = pipeline(
|
43 |
"text-generation",
|
44 |
model="Pisethan/khmer-lesson-model-v2",
|
45 |
tokenizer=tokenizer,
|
46 |
-
device=device
|
|
|
47 |
)
|
48 |
|
49 |
prompt = f"""
|
@@ -61,28 +60,22 @@ Grade: {grade}
|
|
61 |
Topic: {topic}
|
62 |
TaRL Level: {level}
|
63 |
"""
|
64 |
-
output = pipe(
|
65 |
-
prompt,
|
66 |
-
max_new_tokens=300,
|
67 |
-
temperature=0.7,
|
68 |
-
do_sample=True,
|
69 |
-
eos_token_id=tokenizer.eos_token_id
|
70 |
-
)
|
71 |
|
72 |
-
|
73 |
-
save_to_hf_dataset(prompt, output[0]["generated_text"])
|
74 |
|
75 |
-
|
|
|
76 |
|
77 |
@spaces.GPU
|
78 |
def generate_all_lessons():
|
79 |
device = 0 if torch.cuda.is_available() else -1
|
80 |
-
tokenizer = AutoTokenizer.from_pretrained("Pisethan/khmer-lesson-model")
|
81 |
pipe = pipeline(
|
82 |
"text-generation",
|
83 |
model="Pisethan/khmer-lesson-model-v2",
|
84 |
tokenizer=tokenizer,
|
85 |
-
device=device
|
|
|
86 |
)
|
87 |
|
88 |
results = ""
|
@@ -104,26 +97,22 @@ Grade: {grade}
|
|
104 |
Topic: {topic}
|
105 |
TaRL Level: {level}
|
106 |
"""
|
107 |
-
output = pipe(
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
eos_token_id=tokenizer.eos_token_id
|
113 |
-
)
|
114 |
-
results += f"πΉ ααααΆαα {grade} | {topic} | {level}\n{output[0]['generated_text']}\n\n{'-'*50}\n\n"
|
115 |
-
save_to_hf_dataset(prompt, output[0]["generated_text"]) # β
Save each one
|
116 |
return results
|
117 |
|
118 |
-
#
|
119 |
with gr.Blocks() as demo:
|
120 |
gr.Markdown("## π€ α’ααααααα½ααααααΎααααααααα·ααα·ααααΆ")
|
121 |
gr.Markdown("ααααΎαααΎαααααΆαα αααααΆααα αα·αααααα·ααα·ααα αα½α
α
α»α
αααααΎααααααα α¬α
α»α
αααΌαα»αααΆαααααααααααΆαααααααΎααααααααΆααα’ααα")
|
122 |
|
123 |
with gr.Row():
|
124 |
-
grade = gr.Dropdown(
|
125 |
-
topic = gr.Dropdown(
|
126 |
-
level = gr.Dropdown(
|
127 |
|
128 |
output_box = gr.Textbox(
|
129 |
label="π Khmer Lesson Plan",
|
|
|
1 |
import gradio as gr
|
2 |
+
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM
|
3 |
import torch
|
4 |
import spaces
|
5 |
import datetime
|
6 |
import json
|
7 |
import os
|
8 |
from datasets import Dataset
|
9 |
+
from huggingface_hub import HfApi
|
10 |
|
11 |
+
# β
Get token securely from environment
|
12 |
+
token = os.environ.get("HF_TOKEN")
|
13 |
|
14 |
+
# Dropdowns
|
15 |
grade_options = ["1", "2", "3", "4", "5", "6"]
|
16 |
topic_options = ["Addition", "Subtraction", "Counting", "Number Recognition", "Multiplication", "Division"]
|
17 |
level_options = ["Beginner", "Intermediate", "Advanced"]
|
18 |
|
19 |
+
# β
Save generated lesson to Hugging Face Dataset
|
20 |
def save_to_hf_dataset(prompt, output, repo_id="Pisethan/khmer-lesson-history"):
|
21 |
timestamp = datetime.datetime.now().isoformat()
|
22 |
record = {
|
|
|
25 |
"lesson": output
|
26 |
}
|
27 |
|
|
|
28 |
os.makedirs("history", exist_ok=True)
|
29 |
+
path = f"history/lesson_{timestamp.replace(':', '-')}.json"
|
30 |
+
with open(path, "w", encoding="utf-8") as f:
|
31 |
json.dump(record, f, ensure_ascii=False, indent=2)
|
32 |
|
|
|
33 |
dataset = Dataset.from_list([record])
|
34 |
+
dataset.push_to_hub(repo_id, token=token)
|
35 |
|
36 |
@spaces.GPU
|
37 |
def generate_lesson(grade, topic, level):
|
38 |
device = 0 if torch.cuda.is_available() else -1
|
39 |
+
tokenizer = AutoTokenizer.from_pretrained("Pisethan/khmer-lesson-model", use_auth_token=token)
|
40 |
pipe = pipeline(
|
41 |
"text-generation",
|
42 |
model="Pisethan/khmer-lesson-model-v2",
|
43 |
tokenizer=tokenizer,
|
44 |
+
device=device,
|
45 |
+
use_auth_token=token
|
46 |
)
|
47 |
|
48 |
prompt = f"""
|
|
|
60 |
Topic: {topic}
|
61 |
TaRL Level: {level}
|
62 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
|
64 |
+
output = pipe(prompt, max_new_tokens=300, temperature=0.7, do_sample=True, eos_token_id=tokenizer.eos_token_id)
|
|
|
65 |
|
66 |
+
save_to_hf_dataset(prompt, output[0]["generated_text"])
|
67 |
+
return output[0]["generated_text"]
|
68 |
|
69 |
@spaces.GPU
|
70 |
def generate_all_lessons():
|
71 |
device = 0 if torch.cuda.is_available() else -1
|
72 |
+
tokenizer = AutoTokenizer.from_pretrained("Pisethan/khmer-lesson-model", use_auth_token=token)
|
73 |
pipe = pipeline(
|
74 |
"text-generation",
|
75 |
model="Pisethan/khmer-lesson-model-v2",
|
76 |
tokenizer=tokenizer,
|
77 |
+
device=device,
|
78 |
+
use_auth_token=token
|
79 |
)
|
80 |
|
81 |
results = ""
|
|
|
97 |
Topic: {topic}
|
98 |
TaRL Level: {level}
|
99 |
"""
|
100 |
+
output = pipe(prompt, max_new_tokens=300, temperature=0.7, do_sample=True, eos_token_id=tokenizer.eos_token_id)
|
101 |
+
lesson = output[0]["generated_text"]
|
102 |
+
results += f"πΉ ααααΆαα {grade} | {topic} | {level}\n{lesson}\n\n{'-'*50}\n\n"
|
103 |
+
save_to_hf_dataset(prompt, lesson)
|
104 |
+
|
|
|
|
|
|
|
|
|
105 |
return results
|
106 |
|
107 |
+
# UI
|
108 |
with gr.Blocks() as demo:
|
109 |
gr.Markdown("## π€ α’ααααααα½ααααααΎααααααααα·ααα·ααααΆ")
|
110 |
gr.Markdown("ααααΎαααΎαααααΆαα αααααΆααα αα·αααααα·ααα·ααα αα½α
α
α»α
αααααΎααααααα α¬α
α»α
αααΌαα»αααΆαααααααααααΆαααααααΎααααααααΆααα’ααα")
|
111 |
|
112 |
with gr.Row():
|
113 |
+
grade = gr.Dropdown(grade_options, label="ααααΆαα (Grade)", value="1")
|
114 |
+
topic = gr.Dropdown(topic_options, label="αααααΆααα (Topic)", value="Addition")
|
115 |
+
level = gr.Dropdown(level_options, label="ααααα·ααα·ααα (TaRL Level)", value="Beginner")
|
116 |
|
117 |
output_box = gr.Textbox(
|
118 |
label="π Khmer Lesson Plan",
|