Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,17 +1,12 @@
|
|
1 |
-
import
|
2 |
-
from flask import Flask, request, jsonify
|
3 |
import torch
|
4 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
5 |
from huggingface_hub import login
|
6 |
|
7 |
-
app = Flask(__name__)
|
8 |
-
|
9 |
def init_model():
|
10 |
global model, tokenizer
|
11 |
-
|
12 |
-
|
13 |
-
if hf_token is None:
|
14 |
-
raise ValueError("Hugging Face token is not set. Please set the HF_TOKEN environment variable.")
|
15 |
|
16 |
# Аутентификация с использованием токена
|
17 |
login(hf_token, add_to_git_credential=True)
|
@@ -29,18 +24,8 @@ def init_model():
|
|
29 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
30 |
model.to(device)
|
31 |
|
32 |
-
|
33 |
-
def generate_response():
|
34 |
try:
|
35 |
-
data = request.get_json()
|
36 |
-
print(f"Received data: {data}")
|
37 |
-
|
38 |
-
prompt = data.get('prompt', '')
|
39 |
-
max_length = data.get('max_length', 100)
|
40 |
-
temperature = data.get('temperature', 0.7)
|
41 |
-
top_p = data.get('top_p', 0.85)
|
42 |
-
repetition_penalty = data.get('repetition_penalty', 1.1)
|
43 |
-
|
44 |
input_ids = tokenizer.encode(prompt, return_tensors="pt").to(model.device)
|
45 |
attention_mask = torch.ones_like(input_ids).to(model.device)
|
46 |
|
@@ -55,15 +40,28 @@ def generate_response():
|
|
55 |
num_return_sequences=1,
|
56 |
pad_token_id=tokenizer.eos_token_id
|
57 |
)
|
58 |
-
print(f"Generated output: {output}")
|
59 |
response_text = tokenizer.decode(output[0], skip_special_tokens=True)
|
60 |
-
|
61 |
-
return jsonify({"response": response_text})
|
62 |
-
|
63 |
except Exception as e:
|
64 |
-
|
65 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
|
67 |
if __name__ == "__main__":
|
68 |
-
|
69 |
-
app.run(host='0.0.0.0', port=7860)
|
|
|
1 |
+
import gradio as gr
|
|
|
2 |
import torch
|
3 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
4 |
from huggingface_hub import login
|
5 |
|
|
|
|
|
6 |
def init_model():
|
7 |
global model, tokenizer
|
8 |
+
# Вставьте сюда ваш токен доступа Hugging Face
|
9 |
+
hf_token = os.getenv("HF_TOKEN")
|
|
|
|
|
10 |
|
11 |
# Аутентификация с использованием токена
|
12 |
login(hf_token, add_to_git_credential=True)
|
|
|
24 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
25 |
model.to(device)
|
26 |
|
27 |
+
def generate_response(prompt, max_length=100, temperature=0.7, top_p=0.85, repetition_penalty=1.1):
|
|
|
28 |
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
input_ids = tokenizer.encode(prompt, return_tensors="pt").to(model.device)
|
30 |
attention_mask = torch.ones_like(input_ids).to(model.device)
|
31 |
|
|
|
40 |
num_return_sequences=1,
|
41 |
pad_token_id=tokenizer.eos_token_id
|
42 |
)
|
|
|
43 |
response_text = tokenizer.decode(output[0], skip_special_tokens=True)
|
44 |
+
return response_text
|
|
|
|
|
45 |
except Exception as e:
|
46 |
+
return f"Извините, произошла ошибка при генерации ответа: {str(e)}"
|
47 |
+
|
48 |
+
# Инициализация модели и токенизатора
|
49 |
+
init_model()
|
50 |
+
|
51 |
+
# Создание интерфейса Gradio
|
52 |
+
iface = gr.Interface(
|
53 |
+
fn=generate_response,
|
54 |
+
inputs=[
|
55 |
+
gr.inputs.Textbox(lines=2, placeholder="Введите ваш текст здесь..."),
|
56 |
+
gr.inputs.Slider(20, 200, step=1, default=100, label="Максимальная длина"),
|
57 |
+
gr.inputs.Slider(0.1, 1.0, step=0.1, default=0.7, label="Температура"),
|
58 |
+
gr.inputs.Slider(0.1, 1.0, step=0.05, default=0.85, label="Top-p"),
|
59 |
+
gr.inputs.Slider(1.0, 2.0, step=0.1, default=1.1, label="Штраф за повторение")
|
60 |
+
],
|
61 |
+
outputs="text",
|
62 |
+
title="LLM Model Demo",
|
63 |
+
description="Введите текстовый запрос, чтобы сгенерировать ответ с помощью LLM модели."
|
64 |
+
)
|
65 |
|
66 |
if __name__ == "__main__":
|
67 |
+
iface.launch()
|
|