Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,6 +1,5 @@
|
|
1 |
import transformers
|
2 |
import torch
|
3 |
-
import gradio as gr
|
4 |
|
5 |
model_id = "yodayo-ai/nephra_v1.0"
|
6 |
|
@@ -9,81 +8,63 @@ pipeline = transformers.pipeline(
|
|
9 |
model=model_id,
|
10 |
model_kwargs={"torch_dtype": torch.bfloat16},
|
11 |
device_map="auto",
|
12 |
-
offload_folder="offload", #
|
13 |
)
|
14 |
|
15 |
-
# Define characters
|
16 |
characters = [
|
17 |
-
{
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
"name": "Victor",
|
29 |
-
"description": "Victor is a former warrior who left behind his fighting days to seek inner peace and harmony. His life experience and sense of justice make him a reliable friend and mentor.",
|
30 |
-
"traits": "serious, judicious, fair, balanced"
|
31 |
-
}
|
32 |
]
|
33 |
|
34 |
-
|
35 |
-
|
36 |
-
# Find the character
|
37 |
character = next((c for c in characters if c["name"] == character_name), None)
|
38 |
if not character:
|
39 |
return "Character not found."
|
40 |
|
41 |
-
#
|
42 |
-
|
43 |
-
|
44 |
-
{"role": "user", "content": user_input},
|
45 |
-
]
|
46 |
-
|
47 |
-
# Prepare the prompt using the chat template from the pipeline's tokenizer
|
48 |
-
prompt = pipeline.tokenizer.apply_chat_template(
|
49 |
-
messages,
|
50 |
-
tokenize=False,
|
51 |
-
add_generation_prompt=True
|
52 |
-
)
|
53 |
|
54 |
-
# Generate response
|
55 |
outputs = pipeline(
|
56 |
-
|
57 |
max_new_tokens=max_length,
|
58 |
-
eos_token_id=[
|
59 |
-
pipeline.tokenizer.convert_tokens_to_ids(""),
|
60 |
-
pipeline.tokenizer.eos_token_id,
|
61 |
-
],
|
62 |
do_sample=True,
|
63 |
temperature=temperature,
|
64 |
-
|
65 |
-
repetition_penalty=repetition_penalty
|
66 |
)
|
67 |
-
|
68 |
-
|
69 |
-
generated_text = outputs[0]["generated_text"][len(prompt):].strip()
|
70 |
-
return generated_text
|
71 |
|
72 |
# Gradio Interface
|
|
|
|
|
73 |
iface = gr.Interface(
|
74 |
fn=generate_response,
|
75 |
inputs=[
|
76 |
-
gr.Dropdown([c["name"] for c in characters], label="Choose
|
77 |
gr.Textbox(lines=2, placeholder="Enter your text here..."),
|
78 |
gr.Slider(20, 200, step=1, value=100, label="Max Length"),
|
79 |
-
gr.Slider(0.1, 1.0, step=0.1, value=
|
80 |
-
gr.Slider(0.
|
81 |
gr.Slider(1.0, 2.0, step=0.1, value=1.1, label="Repetition Penalty")
|
82 |
],
|
83 |
outputs="text",
|
84 |
-
title="
|
85 |
-
description="
|
86 |
)
|
87 |
|
88 |
if __name__ == "__main__":
|
89 |
-
iface.launch(
|
|
|
1 |
import transformers
|
2 |
import torch
|
|
|
3 |
|
4 |
model_id = "yodayo-ai/nephra_v1.0"
|
5 |
|
|
|
8 |
model=model_id,
|
9 |
model_kwargs={"torch_dtype": torch.bfloat16},
|
10 |
device_map="auto",
|
11 |
+
offload_folder="offload", # Only provided here during model initialization
|
12 |
)
|
13 |
|
14 |
+
# Define characters and traits
|
15 |
characters = [
|
16 |
+
{"name": "Alex",
|
17 |
+
"description": "Alex is a young and ambitious adventurer, full of energy and a thirst for new discoveries. Always ready to face any challenge, he is driven by a desire to explore uncharted places.",
|
18 |
+
"traits": "brave, energetic, optimistic, determined"},
|
19 |
+
|
20 |
+
{"name": "Maya",
|
21 |
+
"description": "Maya is a wise and experienced sorceress, with deep knowledge in magic and ancient rituals. She is known for her calm demeanor, analytical mind, and ability to find solutions in difficult situations.",
|
22 |
+
"traits": "calm, thoughtful, intuitive, attentive"},
|
23 |
+
|
24 |
+
{"name": "Victor",
|
25 |
+
"description": "Victor is a former warrior who gave up fighting for inner peace and harmony. His life experience and pursuit of justice make him a reliable friend and mentor.",
|
26 |
+
"traits": "serious, thoughtful, fair, balanced"}
|
|
|
|
|
|
|
|
|
27 |
]
|
28 |
|
29 |
+
def generate_response(character_name, user_input, max_length=100, temperature=0.7, top_p=0.85, repetition_penalty=1.1):
|
30 |
+
# Find the character data
|
|
|
31 |
character = next((c for c in characters if c["name"] == character_name), None)
|
32 |
if not character:
|
33 |
return "Character not found."
|
34 |
|
35 |
+
# Create the prompt text
|
36 |
+
prompt_text = (f"You are {character_name}, {character['description']}. Traits: {character['traits']}. "
|
37 |
+
f"In response to the question '{user_input}', respond {random.choice(['inspired', 'with doubt', 'joyfully', 'thoughtfully', 'skeptically'])}. Please complete the response.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
|
39 |
+
# Generate response
|
40 |
outputs = pipeline(
|
41 |
+
prompt_text,
|
42 |
max_new_tokens=max_length,
|
|
|
|
|
|
|
|
|
43 |
do_sample=True,
|
44 |
temperature=temperature,
|
45 |
+
top_p=top_p,
|
46 |
+
repetition_penalty=repetition_penalty
|
47 |
)
|
48 |
+
|
49 |
+
return outputs[0]['generated_text']
|
|
|
|
|
50 |
|
51 |
# Gradio Interface
|
52 |
+
import gradio as gr
|
53 |
+
|
54 |
iface = gr.Interface(
|
55 |
fn=generate_response,
|
56 |
inputs=[
|
57 |
+
gr.Dropdown([c["name"] for c in characters], label="Choose Character"),
|
58 |
gr.Textbox(lines=2, placeholder="Enter your text here..."),
|
59 |
gr.Slider(20, 200, step=1, value=100, label="Max Length"),
|
60 |
+
gr.Slider(0.1, 1.0, step=0.1, value=0.7, label="Temperature"),
|
61 |
+
gr.Slider(0.1, 1.0, step=0.05, value=0.85, label="Top-p"),
|
62 |
gr.Slider(1.0, 2.0, step=0.1, value=1.1, label="Repetition Penalty")
|
63 |
],
|
64 |
outputs="text",
|
65 |
+
title="Roleplaying Model Demo",
|
66 |
+
description="Generate responses based on the chosen character's traits."
|
67 |
)
|
68 |
|
69 |
if __name__ == "__main__":
|
70 |
+
iface.launch()
|