File size: 7,119 Bytes
e1aa0dd 210dd42 e1aa0dd 210dd42 e1aa0dd bfdc260 e1aa0dd 210dd42 e1aa0dd 210dd42 e1aa0dd 8c56b70 e1aa0dd 85ad89d b1cda75 85ad89d e1aa0dd 50f5b14 efd141a 50f5b14 efd141a 50f5b14 e1aa0dd 210dd42 e1aa0dd 210dd42 e1aa0dd 210dd42 e1aa0dd 210dd42 e1aa0dd 210dd42 e1aa0dd 210dd42 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 |
import gradio as gr
import pandas as pd
import io
import base64
import uuid
import pixeltable as pxt
from pixeltable.iterators import DocumentSplitter
import numpy as np
from pixeltable.functions.huggingface import sentence_transformer
from pixeltable.functions import openai
from gradio.themes import Monochrome
import os
import getpass
# Store API keys
if 'OPENAI_API_KEY' not in os.environ:
os.environ['OPENAI_API_KEY'] = getpass.getpass('OpenAI API key:')
# Set up embedding function
@pxt.expr_udf
def e5_embed(text: str) -> np.ndarray:
return sentence_transformer(text, model_id='intfloat/e5-large-v2')
# Create prompt function
@pxt.udf
def create_prompt(top_k_list: list[dict], question: str) -> str:
concat_top_k = '\n\n'.join(
elt['text'] for elt in reversed(top_k_list)
)
return f'''
PASSAGES:
{concat_top_k}
QUESTION:
{question}'''
def process_files(pdf_files, chunk_limit, chunk_separator):
# Initialize Pixeltable
pxt.drop_dir('chatbot_demo', force=True)
pxt.create_dir('chatbot_demo')
# Create a table to store the uploaded PDF documents
t = pxt.create_table(
'chatbot_demo.documents',
{'document': pxt.DocumentType(nullable=True),
'question': pxt.StringType(nullable=True)}
)
# Insert the PDF files into the documents table
t.insert({'document': file.name} for file in pdf_files if file.name.endswith('.pdf'))
# Create a view that splits the documents into smaller chunks
chunks_t = pxt.create_view(
'chatbot_demo.chunks',
t,
iterator=DocumentSplitter.create(
document=t.document,
separators=chunk_separator,
limit=chunk_limit if chunk_separator in ["token_limit", "char_limit"] else None,
metadata='title,heading,sourceline'
)
)
# Add an embedding index to the chunks for similarity search
chunks_t.add_embedding_index('text', string_embed=e5_embed)
@chunks_t.query
def top_k(query_text: str):
sim = chunks_t.text.similarity(query_text)
return (
chunks_t.order_by(sim, asc=False)
.select(chunks_t.text, sim=sim)
.limit(5)
)
# Add computed columns to the table for context retrieval and prompt creation
t['question_context'] = chunks_t.top_k(t.question)
t['prompt'] = create_prompt(
t.question_context, t.question
)
# Prepare messages for the API
msgs = [
{
'role': 'system',
'content': 'Answer questions using only the provided context. If the context lacks sufficient information, state this clearly.'
},
{
'role': 'user',
'content': t.prompt
}
]
# Add OpenAI response column
t['response'] = openai.chat_completions(
model='gpt-4o-mini-2024-07-18',
messages=msgs,
max_tokens=300,
top_p=0.9,
temperature=0.7
)
# Extract the answer text from the API response
t['gpt4omini'] = t.response.choices[0].message.content
return "Files processed successfully!"
def get_answer(msg):
t = pxt.get_table('chatbot_demo.documents')
chunks_t = pxt.get_table('chatbot_demo.chunks')
# Insert the question into the table
t.insert([{'question': msg}])
answer = t.select(t.gpt4omini).where(t.question == msg).collect()['gpt4omini'][0]
return answer
def respond(message, chat_history):
bot_message = get_answer(message)
chat_history.append((message, bot_message))
return "", chat_history
# Gradio interface
with gr.Blocks(theme=gr.themes.Base()) as demo:
gr.Markdown(
"""
<div>
<img src="https://raw.githubusercontent.com/pixeltable/pixeltable/main/docs/source/data/pixeltable-logo-large.png" alt="Pixeltable" style="max-width: 200px; margin-bottom: 20px;" />
<h1 style="margin-bottom: 0.5em;">AI Chatbot With Retrieval-Augmented Generation (RAG)</h1>
</div>
"""
)
gr.HTML(
"""
<p>
<a href="https://github.com/pixeltable/pixeltable" target="_blank" style="color: #F25022; text-decoration: none; font-weight: bold;">Pixeltable</a> is a declarative interface for working with text, images, embeddings, and even video, enabling you to store, transform, index, and iterate on data.
</p>
<div style="background-color: #E5DDD4; border: 1px solid #e9ecef; color: #000000; border-radius: 8px; padding: 15px; margin-bottom: 20px;">
<strong style="color: #000000">Disclaimer:</strong> This app is best run on your own hardware with a GPU for optimal performance. This Hugging Face Space uses the free tier (2vCPU, 16GB RAM), which results in slower processing times. If you wish to use this app with your own hardware for improved performance, you can <a href="https://huggingface.co/spaces/Pixeltable/AI-Chatbot-With-Retrieval-Augmented-Generation?duplicate=true" target="_blank" style="color: #4D148C; text-decoration: none; font-weight: bold;">duplicate this Hugging Face Space</a>, run it locally, or use Google Colab with the Free limited GPU support.
</div>
"""
)
with gr.Row():
with gr.Column():
with gr.Accordion("What This Demo Does", open = True):
gr.Markdown("""
- Upload multiple PDF documents.
- Process and index the content of these documents.
- Ask questions about the content and Receive AI-generated answers that are grounded.
""")
with gr.Column():
with gr.Accordion("How does it work?", open = True):
gr.Markdown("""
- When a user asks a question, the system searches for the most relevant chunks of text from the uploaded documents.
- It then uses these relevant chunks as context for a large language model (LLM) to generate an answer.
- The LLM formulates a response based on the provided context and the user's question.
""")
with gr.Row():
with gr.Column(scale=1):
pdf_files = gr.File(label="Upload PDF Documents", file_count="multiple")
chunk_limit = gr.Slider(minimum=100, maximum=500, value=300, step=5, label="Chunk Size Limit")
chunk_separator = gr.Dropdown(
choices=["token_limit", "char_limit", "sentence", "paragraph", "heading"],
value="token_limit",
label="Chunk Separator"
)
process_button = gr.Button("Process Files")
process_output = gr.Textbox(label="Processing Output")
with gr.Column(scale=2):
chatbot = gr.Chatbot(label="Chat History")
msg = gr.Textbox(label="Your Question", placeholder="Ask a question about the uploaded documents")
submit = gr.Button("Submit")
process_button.click(process_files, inputs=[pdf_files, chunk_limit, chunk_separator], outputs=[process_output])
submit.click(respond, inputs=[msg, chatbot], outputs=[msg, chatbot])
if __name__ == "__main__":
demo.launch() |