PierreBrunelle's picture
Update app.py
d68d9a1 verified
raw
history blame
10.8 kB
import gradio as gr
import pixeltable as pxt
from pixeltable.iterators import FrameIterator, StringSplitter
from pixeltable.functions.video import extract_audio
from pixeltable.functions.audio import get_metadata
from pixeltable.functions import openai
import os
import getpass
import numpy as np
from pixeltable.functions.huggingface import sentence_transformer
# Store OpenAI API Key
if 'OPENAI_API_KEY' not in os.environ:
os.environ['OPENAI_API_KEY'] = getpass.getpass('Enter your OpenAI API key:')
MAX_VIDEO_SIZE_MB = 35
def process_video(video_file, progress=gr.Progress()):
progress(0, desc="Initializing...")
try:
# Create a Table, a View, and Computed Columns
pxt.drop_dir('gong_demo', force=True)
pxt.create_dir('gong_demo')
calls_table = pxt.create_table(
'gong_demo.calls', {
"video": pxt.VideoType(nullable=True),
}
)
# Create computed columns to store transformations and persist outputs
calls_table['audio'] = extract_audio(calls_table.video, format='mp3')
calls_table['metadata'] = get_metadata(calls_table.audio)
calls_table['transcription'] = openai.transcriptions(audio=calls_table.audio, model='whisper-1')
calls_table['transcription_text'] = calls_table.transcription.text.astype(pxt.StringType())
sentences_view = pxt.create_view(
'gong_demo.sentences',
calls_table,
iterator=StringSplitter.create(
text=calls_table.transcription_text,
separators='sentence'
)
)
@pxt.expr_udf
def e5_embed(text: str) -> np.ndarray:
return sentence_transformer(text, model_id='intfloat/e5-large-v2')
sentences_view.add_embedding_index('text', string_embed=e5_embed)
progress(0.2, desc="Creating UDFs...")
# Custom User-Defined Function (UDF) for Generating Insights
@pxt.udf
def generate_insights(transcription: str) -> list[dict]:
system_msg = 'You are an AI assistant that analyzes call transcriptions. Analyze the following call transcription and provide insights on: 1. Main topics discussed 2. Action items 3. Sentiment analysis 4. Key questions asked'
user_msg = f'Transcription: "{transcription}"'
return [
{'role': 'system', 'content': system_msg},
{'role': 'user', 'content': user_msg}
]
# Apply the UDF to create a new column
calls_table['insights_prompt'] = generate_insights(calls_table.transcription_text)
progress(0.4, desc="Generating insights...")
# Generate insights using OpenAI's chat completion API
calls_table['insights_response'] = openai.chat_completions(messages=calls_table.insights_prompt, model='gpt-3.5-turbo', max_tokens=500)
# Extract the content of the response
calls_table['insights'] = calls_table.insights_response.choices[0].message.content
if not video_file:
return "Please upload a video file.", ""
# Check video file size
video_size = os.path.getsize(video_file) / (1024 * 1024) # Convert to MB
if video_size > MAX_VIDEO_SIZE_MB:
return f"The video file is larger than {MAX_VIDEO_SIZE_MB} MB. Please upload a smaller file.", ""
progress(0.6, desc="Processing video...")
# Insert a video into the table
calls_table.insert([{"video": video_file}])
progress(0.8, desc="Retrieving results...")
# Retrieve transcription and insights
result = calls_table.select(calls_table.transcription_text, calls_table.insights).tail(1)
transcription = result['transcription_text'][0]
insights = result['insights'][0]
progress(1.0, desc="Processing complete")
return transcription, insights, "Processing complete"
except Exception as e:
return f"An error occurred during video processing: {str(e)}", ""
# Perform similarity search
def similarity_search(query, num_results, progress=gr.Progress()):
sentences_view = pxt.get_table('gong_demo.sentences')
progress(0.5, desc="Performing search...")
sim = sentences_view.text.similarity(query)
results = sentences_view.order_by(sim, asc=False).limit(num_results).select(sentences_view.text, sim=sim).collect().to_pandas()
return results
progress(1.0, desc="Search complete")
def chatbot_response(message, chat_history):
@pxt.udf
def create_chatbot_prompt(context: str, question: str) -> list[dict]:
system_message = "You are an AI assistant that answers questions about a call based on the provided context. If the answer cannot be found in the context, say that you don't know."
user_message = f"Context:\n{context}\n\nQuestion: {question}"
return [
{"role": "system", "content": system_message},
{"role": "user", "content": user_message}
]
try:
sentences_view = pxt.get_table('gong_demo.sentences')
# Perform similarity search to get relevant context
sim = sentences_view.text.similarity(message)
context = sentences_view.order_by(sim, asc=False).limit(5).select(sentences_view.text, sim=sim).collect()
# Prepare the context for the prompt
context_text = "\n".join([row['text'] for row in context])
# Create a temporary table for the chatbot interaction
temp_table = pxt.create_table('gong_demo.temp_chatbot', {'question': pxt.StringType()})
temp_table.insert([{'question': message}])
# Create computed columns for the prompt and response
temp_table['chatbot_prompt'] = create_chatbot_prompt(context_text, temp_table.question)
temp_table['chatbot_response'] = openai.chat_completions(
messages=temp_table.chatbot_prompt,
model='gpt-3.5-turbo',
max_tokens=150
)
temp_table['answer'] = temp_table.chatbot_response.choices[0].message.content
answer = temp_table.select(temp_table.answer).collect()['answer'][0]
# Clean up the temporary table
pxt.drop_table('gong_demo.temp_chatbot', force=True)
chat_history.append((message, answer))
return "", chat_history # Return both expected outputs
except Exception as e:
error_message = f"An error occurred: {str(e)}"
chat_history.append((message, error_message))
return "", chat_history # Return both expec
# Gradio interface
with gr.Blocks(theme=gr.themes.Base()) as demo:
gr.Markdown(
"""
<div style="text-align: left; margin-bottom: 20px;">
<img src="https://raw.githubusercontent.com/pixeltable/pixeltable/main/docs/source/data/pixeltable-logo-large.png" alt="Pixeltable" style="max-width: 150px;" />
<h1 style="margin-top: 10px;">Call Analysis AI Tool</h1>
</div>
"""
)
gr.HTML(
"""
<p>
<a href="https://github.com/pixeltable/pixeltable" target="_blank" style="color: #F25022; text-decoration: none; font-weight: bold;">Pixeltable</a> is a declarative interface for working with text, images, embeddings, and even video, enabling you to store, transform, index, and iterate on data.
</p>
"""
)
with gr.Row():
with gr.Column():
with gr.Accordion("🎯 What does it do?", open=False):
gr.Markdown("""
- πŸŽ™οΈ Transcribes call audio to text
- πŸ’‘ Generates insights and key points
- πŸ” Enables content-based similarity search
- πŸ€– Provides an AI chatbot for in-depth analysis
- πŸ“Š Offers summaries of call data
""")
with gr.Column():
with gr.Accordion("πŸ› οΈ How does it work?", open=False):
gr.Markdown("""
1. πŸ“€ Upload your call recording (video)
2. βš™οΈ AI processes and analyzes the content
3. πŸ“ Review the transcript and generated insights
4. πŸ”Ž Use similarity search to explore specific topics
5. πŸ’¬ Interact with the AI chatbot for deeper understanding
""")
with gr.Row():
with gr.Column(scale=1):
video_file = gr.Video(
label=f"Upload Call Recording (max {MAX_VIDEO_SIZE_MB} MB)",
)
process_btn = gr.Button("Analyze Call", variant="primary")
status_output = gr.Textbox(label="Status", interactive=False)
with gr.Column(scale=2):
with gr.Tabs() as tabs:
with gr.TabItem("πŸ“ Transcript"):
output_transcription = gr.Textbox(label="Call Transcription", lines=15)
with gr.TabItem("πŸ’‘ Insights"):
output_insights = gr.Textbox(label="Key Takeaways", lines=10)
with gr.TabItem("πŸ” Similarity Search"):
with gr.Row():
similarity_query = gr.Textbox(label="Search Query", placeholder="Enter a topic or phrase to search for")
num_results = gr.Slider(minimum=1, maximum=20, value=5, step=1, label="Number of Results")
similarity_search_btn = gr.Button("Search", variant="secondary")
similarity_results = gr.DataFrame(
headers=["Relevant Text", "Similarity Score"],
label="Search Results"
)
with gr.TabItem("πŸ€– AI Assistant"):
chatbot = gr.Chatbot(height=400, label="Chat with AI about the call")
with gr.Row():
msg = gr.Textbox(label="Ask a question about the call", placeholder="e.g., What were the main points discussed?", scale=4)
send_btn = gr.Button("Send", variant="secondary", scale=1)
clear = gr.Button("Clear Chat")
process_btn.click(
process_video,
inputs=[video_file],
outputs=[output_transcription, output_insights, status_output],
show_progress="full"
)
similarity_search_btn.click(
similarity_search,
inputs=[similarity_query, num_results],
outputs=[similarity_results]
)
msg.submit(chatbot_response, [msg, chatbot], [msg, chatbot])
send_btn.click(chatbot_response, [msg, chatbot], [msg, chatbot])
clear.click(lambda: None, None, chatbot, queue=False)
if __name__ == "__main__":
demo.launch()