File size: 4,455 Bytes
ef89dbb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
import gradio as gr
import pandas as pd
import pixeltable as pxt
from pixeltable.iterators import DocumentSplitter
import numpy as np
from pixeltable.functions.huggingface import sentence_transformer
from pixeltable.functions import openai
import os

# Ensure a clean slate for the demo
pxt.drop_dir('rag_demo', force=True)
pxt.create_dir('rag_demo')

# Set up embedding function
@pxt.expr_udf
def e5_embed(text: str) -> np.ndarray:
    return sentence_transformer(text, model_id='intfloat/e5-large-v2')

# Create prompt function
@pxt.udf
def create_prompt(top_k_list: list[dict], question: str) -> str:
    concat_top_k = '\n\n'.join(
        elt['text'] for elt in reversed(top_k_list)
    )
    return f'''
    PASSAGES:

    {concat_top_k}

    QUESTION:

    {question}'''

def process_files(ground_truth_file, pdf_files):
    # Process ground truth file
    if ground_truth_file.name.endswith('.csv'):
        df = pd.read_csv(ground_truth_file.name)
    else:
        df = pd.read_excel(ground_truth_file.name)
    
    queries_t = pxt.create_table('rag_demo.queries', df)

    # Process PDF files
    documents_t = pxt.create_table(
        'rag_demo.documents',
        {'document': pxt.DocumentType()}
    )
    
    for pdf_file in pdf_files:
        documents_t.insert({'document': pdf_file.name})

    # Create chunks view
    chunks_t = pxt.create_view(
        'rag_demo.chunks',
        documents_t,
        iterator=DocumentSplitter.create(
            document=documents_t.document,
            separators='token_limit',
            limit=300
        )
    )

    # Add embedding index
    chunks_t.add_embedding_index('text', string_embed=e5_embed)

    # Create top_k query
    @chunks_t.query
    def top_k(query_text: str):
        sim = chunks_t.text.similarity(query_text)
        return (
            chunks_t.order_by(sim, asc=False)
                .select(chunks_t.text, sim=sim)
                .limit(5)
        )

    # Add computed columns to queries_t
    queries_t['question_context'] = chunks_t.top_k(queries_t.Question)
    queries_t['prompt'] = create_prompt(
        queries_t.question_context, queries_t.Question
    )

    # Prepare messages for OpenAI
    messages = [
        {
            'role': 'system',
            'content': 'Please read the following passages and answer the question based on their contents.'
        },
        {
            'role': 'user',
            'content': queries_t.prompt
        }
    ]

    # Add OpenAI response column
    queries_t['response'] = openai.chat_completions(
        model='gpt-4-0125-preview', messages=messages
    )
    queries_t['answer'] = queries_t.response.choices[0].message.content

    return "Files processed successfully!"

def query_llm(question):
    queries_t = pxt.get_table('rag_demo.queries')
    chunks_t = pxt.get_table('rag_demo.chunks')

    # Perform top-k lookup
    context = chunks_t.top_k(question).collect()

    # Create prompt
    prompt = create_prompt(context, question)

    # Prepare messages for OpenAI
    messages = [
        {
            'role': 'system',
            'content': 'Please read the following passages and answer the question based on their contents.'
        },
        {
            'role': 'user',
            'content': prompt
        }
    ]

    # Get LLM response
    response = openai.chat_completions(model='gpt-4-0125-preview', messages=messages)
    answer = response.choices[0].message.content

    # Add new row to queries_t
    new_row = {'Question': question, 'answer': answer}
    queries_t.insert([new_row])

    # Return updated dataframe
    return queries_t.select(queries_t.Question, queries_t.answer).collect()

# Gradio interface
with gr.Blocks() as demo:
    gr.Markdown("# RAG Demo App")
    
    with gr.Row():
        ground_truth_file = gr.File(label="Upload Ground Truth (CSV or XLSX)")
        pdf_files = gr.File(label="Upload PDF Documents", file_count="multiple")
    
    process_button = gr.Button("Process Files")
    process_output = gr.Textbox(label="Processing Output")
    
    question_input = gr.Textbox(label="Enter your question")
    query_button = gr.Button("Query LLM")
    
    output_dataframe = gr.Dataframe(label="LLM Outputs")

    process_button.click(process_files, inputs=[ground_truth_file, pdf_files], outputs=process_output)
    query_button.click(query_llm, inputs=question_input, outputs=output_dataframe)

if __name__ == "__main__":
    demo.launch()