Update app.py
Browse files
app.py
CHANGED
@@ -26,13 +26,6 @@ if 'FIREWORKS_API_KEY' not in os.environ:
|
|
26 |
if 'MISTRAL_API_KEY' not in os.environ:
|
27 |
os.environ['MISTRAL_API_KEY'] = getpass.getpass('Mistral AI API Key:')
|
28 |
|
29 |
-
"""## Creating UDFs: Embedding and Prompt Functions"""
|
30 |
-
|
31 |
-
# Set up embedding function
|
32 |
-
@pxt.expr_udf
|
33 |
-
def e5_embed(text: str) -> np.ndarray:
|
34 |
-
return sentence_transformer(text, model_id='intfloat/e5-large-v2')
|
35 |
-
|
36 |
# Create prompt function
|
37 |
@pxt.udf
|
38 |
def create_prompt(top_k_list: list[dict], question: str) -> str:
|
@@ -87,8 +80,11 @@ def process_files(ground_truth_file, pdf_files, chunk_limit, chunk_separator, sh
|
|
87 |
|
88 |
progress(0.4, desc="Generating embeddings...")
|
89 |
|
90 |
-
|
91 |
-
|
|
|
|
|
|
|
92 |
|
93 |
# Define a query function to retrieve the top-k most similar chunks for a given question
|
94 |
@chunks_t.query
|
@@ -101,10 +97,10 @@ def process_files(ground_truth_file, pdf_files, chunk_limit, chunk_separator, sh
|
|
101 |
)
|
102 |
|
103 |
# Add computed columns to the queries table for context retrieval and prompt creation
|
104 |
-
queries_t
|
105 |
-
queries_t
|
106 |
queries_t.question_context, queries_t.question
|
107 |
-
)
|
108 |
|
109 |
# Prepare messages for the OpenAI API, including system instructions and user prompt
|
110 |
msgs = [
|
@@ -121,37 +117,37 @@ def process_files(ground_truth_file, pdf_files, chunk_limit, chunk_separator, sh
|
|
121 |
progress(0.6, desc="Querying models...")
|
122 |
|
123 |
# Add OpenAI response column
|
124 |
-
queries_t
|
125 |
model='gpt-4o-mini-2024-07-18',
|
126 |
messages=msgs,
|
127 |
max_tokens=300,
|
128 |
top_p=0.9,
|
129 |
temperature=0.7
|
130 |
-
)
|
131 |
|
132 |
# Create a table in Pixeltable and pick a model hosted on Anthropic with some parameters
|
133 |
-
queries_t
|
134 |
messages=msgs,
|
135 |
model='accounts/fireworks/models/llama-v3p2-3b-instruct',
|
136 |
# These parameters are optional and can be used to tune model behavior:
|
137 |
max_tokens=300,
|
138 |
top_p=0.9,
|
139 |
temperature=0.7
|
140 |
-
)
|
141 |
|
142 |
-
queries_t
|
143 |
messages=msgs,
|
144 |
model='mistral-small-latest',
|
145 |
# These parameters are optional and can be used to tune model behavior:
|
146 |
max_tokens=300,
|
147 |
top_p=0.9,
|
148 |
temperature=0.7
|
149 |
-
)
|
150 |
|
151 |
# Extract the answer text from the API response
|
152 |
-
queries_t
|
153 |
-
queries_t
|
154 |
-
queries_t
|
155 |
|
156 |
# Prepare the output dataframe with selected columns
|
157 |
columns_to_show = []
|
@@ -291,4 +287,4 @@ with gr.Blocks(theme=Monochrome) as demo:
|
|
291 |
)
|
292 |
|
293 |
if __name__ == "__main__":
|
294 |
-
demo.launch(
|
|
|
26 |
if 'MISTRAL_API_KEY' not in os.environ:
|
27 |
os.environ['MISTRAL_API_KEY'] = getpass.getpass('Mistral AI API Key:')
|
28 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
# Create prompt function
|
30 |
@pxt.udf
|
31 |
def create_prompt(top_k_list: list[dict], question: str) -> str:
|
|
|
80 |
|
81 |
progress(0.4, desc="Generating embeddings...")
|
82 |
|
83 |
+
chunks_t.add_embedding_index(
|
84 |
+
'text',
|
85 |
+
idx_name='minilm_idx',
|
86 |
+
string_embed=sentence_transformer.using(model_id='sentence-transformers/all-MiniLM-L12-v2')
|
87 |
+
)
|
88 |
|
89 |
# Define a query function to retrieve the top-k most similar chunks for a given question
|
90 |
@chunks_t.query
|
|
|
97 |
)
|
98 |
|
99 |
# Add computed columns to the queries table for context retrieval and prompt creation
|
100 |
+
queries_t.add_computed_column(question_context=chunks_t.queries.top_k(queries_t.question))
|
101 |
+
queries_t.add_computed_column(prompt=create_prompt(
|
102 |
queries_t.question_context, queries_t.question
|
103 |
+
))
|
104 |
|
105 |
# Prepare messages for the OpenAI API, including system instructions and user prompt
|
106 |
msgs = [
|
|
|
117 |
progress(0.6, desc="Querying models...")
|
118 |
|
119 |
# Add OpenAI response column
|
120 |
+
queries_t.add_computed_column(response=openai.chat_completions(
|
121 |
model='gpt-4o-mini-2024-07-18',
|
122 |
messages=msgs,
|
123 |
max_tokens=300,
|
124 |
top_p=0.9,
|
125 |
temperature=0.7
|
126 |
+
))
|
127 |
|
128 |
# Create a table in Pixeltable and pick a model hosted on Anthropic with some parameters
|
129 |
+
queries_t.add_computed_column(response_2=f_chat_completions(
|
130 |
messages=msgs,
|
131 |
model='accounts/fireworks/models/llama-v3p2-3b-instruct',
|
132 |
# These parameters are optional and can be used to tune model behavior:
|
133 |
max_tokens=300,
|
134 |
top_p=0.9,
|
135 |
temperature=0.7
|
136 |
+
))
|
137 |
|
138 |
+
queries_t.add_computed_column(response_3=chat_completions(
|
139 |
messages=msgs,
|
140 |
model='mistral-small-latest',
|
141 |
# These parameters are optional and can be used to tune model behavior:
|
142 |
max_tokens=300,
|
143 |
top_p=0.9,
|
144 |
temperature=0.7
|
145 |
+
))
|
146 |
|
147 |
# Extract the answer text from the API response
|
148 |
+
queries_t.add_computed_column(gpt4omini=queries_t.response.choices[0].message.content)
|
149 |
+
queries_t.add_computed_column(llamav3p23b=queries_t.response_2.choices[0].message.content)
|
150 |
+
queries_t.add_computed_column(mistralsmall=queries_t.response_3.choices[0].message.content)
|
151 |
|
152 |
# Prepare the output dataframe with selected columns
|
153 |
columns_to_show = []
|
|
|
287 |
)
|
288 |
|
289 |
if __name__ == "__main__":
|
290 |
+
demo.launch()
|