Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,330 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import pixeltable as pxt
|
3 |
+
from pixeltable.functions.mistralai import chat_completions
|
4 |
+
from datetime import datetime
|
5 |
+
|
6 |
+
from textblob import TextBlob
|
7 |
+
import re
|
8 |
+
import nltk
|
9 |
+
from nltk.tokenize import word_tokenize
|
10 |
+
from nltk.corpus import stopwords
|
11 |
+
|
12 |
+
# Ensure necessary NLTK data is downloaded
|
13 |
+
nltk.download('punkt', quiet=True)
|
14 |
+
nltk.download('stopwords', quiet=True)
|
15 |
+
nltk.download('punkt_tab', quiet=True)
|
16 |
+
|
17 |
+
import os
|
18 |
+
import getpass
|
19 |
+
|
20 |
+
# Set up Mistral API key
|
21 |
+
if 'MISTRAL_API_KEY' not in os.environ:
|
22 |
+
os.environ['MISTRAL_API_KEY'] = getpass.getpass('Mistral AI API Key:')
|
23 |
+
|
24 |
+
# Define UDFs
|
25 |
+
@pxt.udf
|
26 |
+
def get_sentiment_score(text: str) -> float:
|
27 |
+
return TextBlob(text).sentiment.polarity
|
28 |
+
|
29 |
+
@pxt.udf
|
30 |
+
def extract_keywords(text: str, num_keywords: int = 5) -> list:
|
31 |
+
stop_words = set(stopwords.words('english'))
|
32 |
+
words = word_tokenize(text.lower())
|
33 |
+
keywords = [word for word in words if word.isalnum() and word not in stop_words]
|
34 |
+
return sorted(set(keywords), key=keywords.count, reverse=True)[:num_keywords]
|
35 |
+
|
36 |
+
@pxt.udf
|
37 |
+
def calculate_readability(text: str) -> float:
|
38 |
+
words = len(re.findall(r'\w+', text))
|
39 |
+
sentences = len(re.findall(r'\w+[.!?]', text)) or 1
|
40 |
+
average_words_per_sentence = words / sentences
|
41 |
+
return 206.835 - 1.015 * average_words_per_sentence
|
42 |
+
|
43 |
+
# Function to run inference and analysis
|
44 |
+
def run_inference_and_analysis(task, system_prompt, input_text, temperature, top_p, max_tokens, min_tokens, stop, random_seed, safe_prompt):
|
45 |
+
|
46 |
+
# Initialize Pixeltable
|
47 |
+
pxt.drop_table('mistral_prompts', ignore_errors=True)
|
48 |
+
t = pxt.create_table('mistral_prompts', {
|
49 |
+
'task': pxt.StringType(),
|
50 |
+
'system': pxt.StringType(),
|
51 |
+
'input_text': pxt.StringType(),
|
52 |
+
'timestamp': pxt.TimestampType(),
|
53 |
+
'temperature': pxt.FloatType(),
|
54 |
+
'top_p': pxt.FloatType(),
|
55 |
+
'max_tokens': pxt.IntType(nullable=True),
|
56 |
+
'min_tokens': pxt.IntType(nullable=True),
|
57 |
+
'stop': pxt.StringType(nullable=True),
|
58 |
+
'random_seed': pxt.IntType(nullable=True),
|
59 |
+
'safe_prompt': pxt.BoolType(nullable=True)
|
60 |
+
})
|
61 |
+
|
62 |
+
# Insert new row into Pixeltable
|
63 |
+
t.insert([{
|
64 |
+
'task': task,
|
65 |
+
'system': system_prompt,
|
66 |
+
'input_text': input_text,
|
67 |
+
'timestamp': datetime.now(),
|
68 |
+
'temperature': temperature,
|
69 |
+
'top_p': top_p,
|
70 |
+
'max_tokens': max_tokens,
|
71 |
+
'min_tokens': min_tokens,
|
72 |
+
'stop': stop,
|
73 |
+
'random_seed': random_seed,
|
74 |
+
'safe_prompt': safe_prompt
|
75 |
+
}])
|
76 |
+
|
77 |
+
# Define messages for chat completion
|
78 |
+
msgs = [
|
79 |
+
{'role': 'system', 'content': t.system},
|
80 |
+
{'role': 'user', 'content': t.input_text}
|
81 |
+
]
|
82 |
+
|
83 |
+
common_params = {
|
84 |
+
'messages': msgs,
|
85 |
+
'temperature': temperature,
|
86 |
+
'top_p': top_p,
|
87 |
+
'max_tokens': max_tokens if max_tokens is not None else 300,
|
88 |
+
'min_tokens': min_tokens,
|
89 |
+
'stop': stop.split(',') if stop else None,
|
90 |
+
'random_seed': random_seed,
|
91 |
+
'safe_prompt': safe_prompt
|
92 |
+
}
|
93 |
+
|
94 |
+
# Run inference with both models
|
95 |
+
t['open_mistral_nemo'] = chat_completions(model='open-mistral-nemo', **common_params)
|
96 |
+
t['mistral_medium'] = chat_completions(model='mistral-medium', **common_params)
|
97 |
+
|
98 |
+
# Extract responses
|
99 |
+
t['omn_response'] = t.open_mistral_nemo.choices[0].message.content.astype(pxt.StringType())
|
100 |
+
t['ml_response'] = t.mistral_medium.choices[0].message.content.astype(pxt.StringType())
|
101 |
+
|
102 |
+
# Run analysis
|
103 |
+
t['large_sentiment_score'] = get_sentiment_score(t.ml_response)
|
104 |
+
t['large_keywords'] = extract_keywords(t.ml_response)
|
105 |
+
t['large_readability_score'] = calculate_readability(t.ml_response)
|
106 |
+
t['open_sentiment_score'] = get_sentiment_score(t.omn_response)
|
107 |
+
t['open_keywords'] = extract_keywords(t.omn_response)
|
108 |
+
t['open_readability_score'] = calculate_readability(t.omn_response)
|
109 |
+
|
110 |
+
# Retrieve results
|
111 |
+
results = t.select(
|
112 |
+
t.omn_response, t.ml_response,
|
113 |
+
t.large_sentiment_score, t.open_sentiment_score,
|
114 |
+
t.large_keywords, t.open_keywords,
|
115 |
+
t.large_readability_score, t.open_readability_score
|
116 |
+
).tail(1)
|
117 |
+
|
118 |
+
history = t.select(t.timestamp, t.task, t.system, t.input_text).order_by(t.timestamp, asc=False).collect().to_pandas()
|
119 |
+
|
120 |
+
responses = t.select(t.timestamp, t.omn_response, t.ml_response).order_by(t.timestamp, asc=False).collect().to_pandas()
|
121 |
+
|
122 |
+
analysis = t.select(
|
123 |
+
t.timestamp,
|
124 |
+
t.open_sentiment_score,
|
125 |
+
t.large_sentiment_score,
|
126 |
+
t.open_keywords,
|
127 |
+
t.large_keywords,
|
128 |
+
t.open_readability_score,
|
129 |
+
t.large_readability_score
|
130 |
+
).order_by(t.timestamp, asc=False).collect().to_pandas()
|
131 |
+
|
132 |
+
params = t.select(
|
133 |
+
t.timestamp,
|
134 |
+
t.temperature,
|
135 |
+
t.top_p,
|
136 |
+
t.max_tokens,
|
137 |
+
t.min_tokens,
|
138 |
+
t.stop,
|
139 |
+
t.random_seed,
|
140 |
+
t.safe_prompt
|
141 |
+
).order_by(t.timestamp, asc=False).collect().to_pandas()
|
142 |
+
|
143 |
+
return (
|
144 |
+
results['omn_response'][0],
|
145 |
+
results['ml_response'][0],
|
146 |
+
results['large_sentiment_score'][0],
|
147 |
+
results['open_sentiment_score'][0],
|
148 |
+
results['large_keywords'][0],
|
149 |
+
results['open_keywords'][0],
|
150 |
+
results['large_readability_score'][0],
|
151 |
+
results['open_readability_score'][0],
|
152 |
+
history,
|
153 |
+
responses,
|
154 |
+
analysis,
|
155 |
+
params
|
156 |
+
)
|
157 |
+
|
158 |
+
# Gradio interface
|
159 |
+
def gradio_interface():
|
160 |
+
with gr.Blocks(theme=gr.themes.Base(), title="Prompt Engineering and LLM Studio") as demo:
|
161 |
+
gr.Markdown(
|
162 |
+
"""
|
163 |
+
<img src="https://raw.githubusercontent.com/pixeltable/pixeltable/main/docs/source/data/pixeltable-logo-large.png" alt="Pixeltable" width="20%" /></img>
|
164 |
+
# Prompt Engineering and LLM Studio
|
165 |
+
|
166 |
+
This application demonstrates how [Pixeltable](https://github.com/pixeltable/pixeltable) can be used for rapid and incremental prompt engineering
|
167 |
+
and model comparison workflows. It showcases Pixeltable's ability to directly store, version, index,
|
168 |
+
and transform data while providing an interactive interface to experiment with different prompts and models.
|
169 |
+
|
170 |
+
Remember, effective prompt engineering often requires experimentation and iteration. Use this tool to systematically improve your prompts and understand how different inputs and parameters affect the LLM outputs.
|
171 |
+
"""
|
172 |
+
)
|
173 |
+
|
174 |
+
with gr.Row():
|
175 |
+
with gr.Column():
|
176 |
+
with gr.Accordion("What does it do?", open=False):
|
177 |
+
gr.Markdown(
|
178 |
+
"""
|
179 |
+
1. **Data Organization**: Pixeltable uses tables and views to organize data, similar to traditional databases but with enhanced capabilities for AI workflows.
|
180 |
+
2. **Computed Columns**: These are dynamically generated columns based on expressions applied to columns.
|
181 |
+
3. **Data Storage**: All prompts, responses, and analysis results are stored in Pixeltable tables.
|
182 |
+
4. **Versioning**: Every operations are automatically versioned, allowing you to track changes over time.
|
183 |
+
5. **UDFs**: Sentiment scores, keywords, and readability scores are computed dynamically.
|
184 |
+
6. **Querying**: The history and analysis tabs leverage Pixeltable's querying capabilities to display results.
|
185 |
+
"""
|
186 |
+
)
|
187 |
+
|
188 |
+
with gr.Column():
|
189 |
+
with gr.Accordion("How does it work?", open=False):
|
190 |
+
gr.Markdown(
|
191 |
+
"""
|
192 |
+
1. **Define your task**: This helps you keep track of different experiments.
|
193 |
+
2. **Set up your prompt**: Enter a system prompt in the "System Prompt" field. Write your specific input or question in the "Input Text" field
|
194 |
+
3. **Adjust parameters (optional)**: Adjust temperature, top_p, token limits, etc., to control the model's output.
|
195 |
+
4. **Run the analysis**: Click the "Run Inference and Analysis" button.
|
196 |
+
5. **Review the results**: Compare the responses from both models and exmaine the scores.
|
197 |
+
6. **Iterate and refine**: Based on the results, refine your prompt or adjust parameters.
|
198 |
+
"""
|
199 |
+
)
|
200 |
+
|
201 |
+
with gr.Row():
|
202 |
+
with gr.Column():
|
203 |
+
task = gr.Textbox(label="Task (Arbitrary Category)")
|
204 |
+
system_prompt = gr.Textbox(label="System Prompt")
|
205 |
+
input_text = gr.Textbox(label="Input Text")
|
206 |
+
|
207 |
+
with gr.Accordion("Advanced Settings", open=False):
|
208 |
+
temperature = gr.Slider(minimum=0, maximum=1, value=0.7, step=0.1, label="Temperature")
|
209 |
+
top_p = gr.Slider(minimum=0, maximum=1, value=0.9, step=0.1, label="Top P")
|
210 |
+
max_tokens = gr.Number(label="Max Tokens", value=300)
|
211 |
+
min_tokens = gr.Number(label="Min Tokens", value=None)
|
212 |
+
stop = gr.Textbox(label="Stop Sequences (comma-separated)")
|
213 |
+
random_seed = gr.Number(label="Random Seed", value=None)
|
214 |
+
safe_prompt = gr.Checkbox(label="Safe Prompt", value=False)
|
215 |
+
|
216 |
+
submit_btn = gr.Button("Run Inference and Analysis")
|
217 |
+
|
218 |
+
with gr.Tabs():
|
219 |
+
with gr.Tab("Prompt Intput"):
|
220 |
+
history = gr.Dataframe(
|
221 |
+
headers=["Task", "System Prompt", "Input Text", "Timestamp"],
|
222 |
+
wrap=True
|
223 |
+
)
|
224 |
+
|
225 |
+
with gr.Tab("Model Responses"):
|
226 |
+
responses = gr.Dataframe(
|
227 |
+
headers=["Timestamp", "Open-Mistral-Nemo Response", "Mistral-Medium Response"],
|
228 |
+
wrap=True
|
229 |
+
)
|
230 |
+
|
231 |
+
with gr.Tab("Analysis Results"):
|
232 |
+
analysis = gr.Dataframe(
|
233 |
+
headers=[
|
234 |
+
"Timestamp",
|
235 |
+
"Open-Mistral-Nemo Sentiment",
|
236 |
+
"Mistral-Medium Sentiment",
|
237 |
+
"Open-Mistral-Nemo Keywords",
|
238 |
+
"Mistral-Medium Keywords",
|
239 |
+
"Open-Mistral-Nemo Readability",
|
240 |
+
"Mistral-Medium Readability"
|
241 |
+
],
|
242 |
+
wrap=True
|
243 |
+
)
|
244 |
+
|
245 |
+
with gr.Tab("Model Parameters"):
|
246 |
+
params = gr.Dataframe(
|
247 |
+
headers=[
|
248 |
+
"Timestamp",
|
249 |
+
"Temperature",
|
250 |
+
"Top P",
|
251 |
+
"Max Tokens",
|
252 |
+
"Min Tokens",
|
253 |
+
"Stop Sequences",
|
254 |
+
"Random Seed",
|
255 |
+
"Safe Prompt"
|
256 |
+
],
|
257 |
+
wrap=True
|
258 |
+
)
|
259 |
+
|
260 |
+
# Define the examples
|
261 |
+
examples = [
|
262 |
+
# Example 1: Sentiment Analysis
|
263 |
+
["Sentiment Analysis",
|
264 |
+
"You are an AI trained to analyze the sentiment of text. Provide a detailed analysis of the emotional tone, highlighting key phrases that indicate sentiment.",
|
265 |
+
"The new restaurant downtown exceeded all my expectations. The food was exquisite, the service impeccable, and the ambiance was perfect for a romantic evening. I can't wait to go back!",
|
266 |
+
0.3, 0.95, 200, None, "", None, False],
|
267 |
+
|
268 |
+
# Example 2: Code Explanation
|
269 |
+
["Code Explanation",
|
270 |
+
"You are an expert programmer. Explain the given code snippet in simple terms, highlighting its purpose, key components, and potential improvements.",
|
271 |
+
"""
|
272 |
+
def quicksort(arr):
|
273 |
+
if len(arr) <= 1:
|
274 |
+
return arr
|
275 |
+
pivot = arr[len(arr) // 2]
|
276 |
+
left = [x for x in arr if x < pivot]
|
277 |
+
middle = [x for x in arr if x == pivot]
|
278 |
+
right = [x for x in arr if x > pivot]
|
279 |
+
return quicksort(left) + middle + quicksort(right)
|
280 |
+
""",
|
281 |
+
0.7, 0.9, 400, 100, "In conclusion,", 42, True],
|
282 |
+
|
283 |
+
# Example 3: Creative Writing
|
284 |
+
["Story Generation",
|
285 |
+
"You are a creative writer. Generate a short, engaging story based on the given prompt. Include vivid descriptions and an unexpected twist.",
|
286 |
+
"In a world where dreams are shared, a young girl discovers she can manipulate other people's dreams.",
|
287 |
+
0.9, 0.8, 500, 200, "The end.", None, False]
|
288 |
+
]
|
289 |
+
|
290 |
+
with gr.Column():
|
291 |
+
omn_response = gr.Textbox(label="Open-Mistral-Nemo Response")
|
292 |
+
ml_response = gr.Textbox(label="Mistral-Medium Response")
|
293 |
+
|
294 |
+
with gr.Row():
|
295 |
+
large_sentiment = gr.Number(label="Mistral-Medium Sentiment")
|
296 |
+
open_sentiment = gr.Number(label="Open-Mistral-Nemo Sentiment")
|
297 |
+
|
298 |
+
with gr.Row():
|
299 |
+
large_keywords = gr.Textbox(label="Mistral-Medium Keywords")
|
300 |
+
open_keywords = gr.Textbox(label="Open-Mistral-Nemo Keywords")
|
301 |
+
|
302 |
+
with gr.Row():
|
303 |
+
large_readability = gr.Number(label="Mistral-Medium Readability")
|
304 |
+
open_readability = gr.Number(label="Open-Mistral-Nemo Readability")
|
305 |
+
|
306 |
+
gr.Examples(
|
307 |
+
examples=examples,
|
308 |
+
inputs=[task, system_prompt, input_text, temperature, top_p, max_tokens, min_tokens, stop, random_seed, safe_prompt],
|
309 |
+
outputs=[omn_response, ml_response, large_sentiment, open_sentiment, large_keywords, open_keywords, large_readability, open_readability],
|
310 |
+
fn=run_inference_and_analysis,
|
311 |
+
cache_examples=True,
|
312 |
+
)
|
313 |
+
|
314 |
+
gr.Markdown(
|
315 |
+
"""
|
316 |
+
For more information, visit [Pixeltable's GitHub repository](https://github.com/pixeltable/pixeltable).
|
317 |
+
"""
|
318 |
+
)
|
319 |
+
|
320 |
+
submit_btn.click(
|
321 |
+
run_inference_and_analysis,
|
322 |
+
inputs=[task, system_prompt, input_text, temperature, top_p, max_tokens, min_tokens, stop, random_seed, safe_prompt],
|
323 |
+
outputs=[omn_response, ml_response, large_sentiment, open_sentiment, large_keywords, open_keywords, large_readability, open_readability, history, responses, analysis, params ]
|
324 |
+
)
|
325 |
+
|
326 |
+
return demo
|
327 |
+
|
328 |
+
# Launch the Gradio interface
|
329 |
+
if __name__ == "__main__":
|
330 |
+
gradio_interface().launch()
|