|
""" |
|
Copyright (c) 2023, salesforce.com, inc. |
|
All rights reserved. |
|
SPDX-License-Identifier: BSD-3-Clause |
|
For full license text, see the LICENSE_Lavis file in the repo root or https://opensource.org/licenses/BSD-3-Clause |
|
""" |
|
import logging |
|
import torch |
|
import torch.nn as nn |
|
|
|
from .dist_utils import download_cached_file |
|
from .Qformer import BertConfig, BertLMHeadModel |
|
from .eva_vit import create_eva_vit_g |
|
from transformers import BertTokenizer |
|
|
|
|
|
class Blip2Base(nn.Module): |
|
@classmethod |
|
def init_tokenizer(cls): |
|
tokenizer = BertTokenizer.from_pretrained("bert-base-uncased") |
|
tokenizer.add_special_tokens({"bos_token": "[DEC]"}) |
|
return tokenizer |
|
|
|
@property |
|
def device(self): |
|
return list(self.parameters())[0].device |
|
|
|
@classmethod |
|
def init_Qformer(cls, num_query_token, vision_width, cross_attention_freq=2): |
|
encoder_config = BertConfig.from_pretrained("bert-base-uncased") |
|
encoder_config.encoder_width = vision_width |
|
|
|
encoder_config.add_cross_attention = True |
|
encoder_config.cross_attention_freq = cross_attention_freq |
|
encoder_config.query_length = num_query_token |
|
encoder_config.is_decoder = True |
|
Qformer = BertLMHeadModel(config=encoder_config) |
|
query_tokens = nn.Parameter( |
|
torch.zeros(1, num_query_token, encoder_config.hidden_size) |
|
) |
|
query_tokens.data.normal_(mean=0.0, std=encoder_config.initializer_range) |
|
return Qformer, query_tokens |
|
|
|
@classmethod |
|
def init_vision_encoder( |
|
cls, model_name, img_size, drop_path_rate, use_grad_checkpoint, precision |
|
): |
|
assert model_name == "eva_clip_g", "vit model must be eva_clip_g for current version of MiniGPT-4" |
|
visual_encoder = create_eva_vit_g( |
|
img_size, drop_path_rate, use_grad_checkpoint, precision |
|
) |
|
|
|
ln_vision = LayerNorm(visual_encoder.num_features) |
|
return visual_encoder, ln_vision |
|
|
|
def load_from_pretrained(self, url_or_filename): |
|
cached_file = download_cached_file( |
|
url_or_filename, check_hash=False, progress=True |
|
) |
|
checkpoint = torch.load(cached_file, map_location="cpu") |
|
|
|
state_dict = checkpoint["model"] |
|
|
|
msg = self.load_state_dict(state_dict, strict=False) |
|
|
|
|
|
logging.info("load checkpoint from %s" % url_or_filename) |
|
|
|
return msg |
|
|
|
|
|
class LayerNorm(nn.LayerNorm): |
|
"""Subclass torch's LayerNorm to handle fp16.""" |
|
|
|
def forward(self, x: torch.Tensor): |
|
orig_type = x.dtype |
|
ret = super().forward(x.type(torch.float32)) |
|
return ret.type(orig_type) |
|
|
|
|