File size: 6,551 Bytes
1cc6224 797986c 1cc6224 7a1847a ff9d83f 1cc6224 730f8b5 1cc6224 acecd06 ff9d83f 1cc6224 e8c34d9 1cc6224 ff9d83f 1cc6224 b86e0e2 1cc6224 c38fc84 1cc6224 d9aac01 1cc6224 791bca4 d6dd7ea 61f614e d6dd7ea 61f614e d6dd7ea 1cc6224 a3245bb 1ed781c 931d7c9 1ed781c 931d7c9 1ed781c 931d7c9 ec572ac 1cc6224 a3245bb 16568ec 1cc6224 b8cb126 1b58b4a 1cc6224 4c5d867 1cc6224 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 |
import gradio as gr
from sentence_transformers import SentenceTransformer, util
import openai
import os
import matplotlib.pyplot as plt
from matplotlib import font_manager
os.environ["TOKENIZERS_PARALLELISM"] = "false"
# Initialize paths and model identifiers for easy configuration and maintenance
filename = "output_topic_details.txt" # Path to the file storing chess-specific details
retrieval_model_name = 'output/sentence-transformer-finetuned/'
openai.api_key = os.environ["OPENAI_API_KEY"]
system_message = "You are a game chatbot specialized in recommending video games based on genre, what they are about, and price."
# Initial system message to set the behavior of the assistant
messages = [{"role": "system", "content": system_message}]
# Attempt to load the necessary models and provide feedback on success or failure
try:
retrieval_model = SentenceTransformer(retrieval_model_name)
print("Models loaded successfully.")
except Exception as e:
print(f"Failed to load models: {e}")
def load_and_preprocess_text(filename):
"""
Load and preprocess text from a file, removing empty lines and stripping whitespace.
"""
try:
with open(filename, 'r', encoding='utf-8') as file:
segments = [line.strip() for line in file if line.strip()]
print("Text loaded and preprocessed successfully.")
return segments
except Exception as e:
print(f"Failed to load or preprocess text: {e}")
return []
segments = load_and_preprocess_text(filename)
def find_relevant_segment(user_query, segments):
"""
Find the most relevant text segment for a user's query using cosine similarity among sentence embeddings.
This version finds the best match based on the content of the query.
"""
try:
# Lowercase the query for better matching
lower_query = user_query.lower()
# Encode the query and the segments
query_embedding = retrieval_model.encode(lower_query)
segment_embeddings = retrieval_model.encode(segments)
# Compute cosine similarities between the query and the segments
similarities = util.pytorch_cos_sim(query_embedding, segment_embeddings)[0]
# Find the index of the most similar segment
best_idx = similarities.argmax()
# Return the most relevant segment
return segments[best_idx]
except Exception as e:
print(f"Error in finding relevant segment: {e}")
return ""
def generate_response(user_query, relevant_segment):
"""
Generate a response emphasizing the bot's capability in providing video game reccomendations.
"""
try:
user_message = f"Here's the information on this game: {relevant_segment}"
# Append user's message to messages list
messages.append({"role": "user", "content": user_message})
response = openai.ChatCompletion.create(
model="gpt-3.5-turbo",
messages=messages,
max_tokens=400,
temperature=0.2,
top_p=1,
frequency_penalty=0,
presence_penalty=0
)
# Extract the response text
output_text = response['choices'][0]['message']['content'].strip()
# Append assistant's message to messages list for context
messages.append({"role": "assistant", "content": output_text})
return output_text
except Exception as e:
print(f"Error in generating response: {e}")
return f"Error in generating response: {e}"
def query_model(question):
"""
Process a question, find relevant information, and generate a response.
"""
if question == "":
return "Welcome to Plai! Ask me for any game recommendations."
relevant_segment = find_relevant_segment(question, segments)
if not relevant_segment:
return "Could not find specific information. Please refine your question."
response = generate_response(question, relevant_segment)
return response
# Define the welcome message and specific topics the chatbot can provide information about
welcome_message = """
<span style="color:#846A6A; font-size:90px; font-weight:bold; font_path = 'Silkscreen-Regular.ttf'font_manager.fontManager.addfont(font_path); plt.rcParams['font.family'] = font_manager.FontProperties(fname=font_path).get_name();">🎮 Welcome to Plai!</span>
## Your AI-driven assistant for all videogame related queries. Created by Perennial, Jiya, and Ly-Ly of the 2024 Kode With Klossy San Francisco Camp.
"""
topics = """
### Feel Free to ask for recommendations based on:
🕹️ Genre
🕹️ Affordability
🕹️ Feeling
"""
theme = gr.themes.Base().set(
background_fill_primary='#FAB9CB', # Light pink background
background_fill_primary_dark='#AB4E68', # Light pink background
background_fill_secondary='#AB4E68', # Light orange background
background_fill_secondary_dark='#AB4E68', # Dark orange background
border_color_accent='#FFF2F1', # Accent border color
border_color_accent_dark='#AB4E68', # Dark accent border color
border_color_accent_subdued='#AB4E68', # Subdued accent border color
border_color_primary='#AB4E68', # Primary border color
block_border_color='#FFF2F1', # Block border color
button_primary_background_fill='#AB4E68', # Primary button background color
button_primary_background_fill_dark='#AB4E68', # Dark primary button background color
)
# Setup the Gradio Blocks interface with custom layout components
with gr.Blocks(theme=theme) as demo:
gr.Image("Video Game Banner.gif", show_label = False, show_share_button = False, show_download_button = False)
gr.Markdown(welcome_message) # Display the formatted welcome message
with gr.Row():
gr.Image("Internet_pop-up-removebg-preview (1).png", show_label = False, show_share_button = False, show_download_button = False)
with gr.Column():
gr.Markdown(topics) # Show the topics on the left side
with gr.Row():
with gr.Column():
question = gr.Textbox(label="Your question", placeholder="What do you want to ask about?")
answer = gr.Textbox(label="Plai Response", placeholder="Plai will respond here...", interactive=False, lines=10)
submit_button = gr.Button("Submit")
submit_button.click(fn=query_model, inputs=question, outputs=answer)
# Launch the Gradio app to allow user interaction
demo.launch(share=True)
|